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ABSTRACT

We present a theory relating the completeness and independence properties

of sets of complex exponentials {e k } in the Sobolev spaces Hm[a,b] to

strongly continuous groups of bounded operators on Hm[a,b] whose generator

is the differentiation operator on the domain

Hm+ 1
{x E H [a,b]l (x,n) = 0}

where n is an element of Hm+1 [a,b]' whose Fourier transform has {X as
k

its zero set in the complex plane. In the process of proving our theorems we

also develop a new approach to the use of the Laplace transform in the

spaces Hm[a,b].
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SIGNIFICANCE AND EXPLANATION

In two previous MRC Technical Summary reports #1700, 2021 we have pointed
X t

out the relationship between bases of complex exponentials {e k in the

Sobolev spaces Hm[a,b], neutral functional equations, and control canonical

forms for systems governed by hyperbolic partial differential equations - the

last mentioned being important in the development of stabilization and

spectral assignment theories for such systems. These studies, and additional

studies projected for related systems, have focussed our attention on the need

to relate the classical theory of exponential bases to the more modern theory

of semigroups of bounded operators. Attempts to carry this program out for

Hm[a,b] as well as L 2 [a,bl, an important consideration for applications,

have also resulted in the need for development of ways to apply the Laplace

transform in Hm[a,b], as presented in Section 3 ff. As a result we have

obtained completeness and independence theorems for exponential bases in

him ra,b] in a simpler and more natural setting than in the existing

literature.

A For

' '., T >d, J.! Os

The responsibility for the wording and views expressed in this descriptive
summary lips with MRC, and not with the author of this report.
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UNIFORM BASES OF EXPONENTIALS, NEUTRAL GROUPS,

AND A TRANSFORM THEORY FOR H'[a,b]

DAVID L. RUSSELL

1. Introduction.

The central entities in this paper are generalized exponential functions, by which we

At
mean the exponential functions, e , A complex, t real, together with the functions

k At
(t /k!)e , k = 1,2,3,.. . For reference, and to fix the notation, we set down

Definition 1.1. A sequence of generalized exponentials is a set of functions

Pj,k(t) = (t k/kl)e 
j  

, t E I , j c J, k = 0,1,2,...,mj-1 , (1.1)

where I is a closed real interval, J is e. countable index set, the complex numbers

A , j E J , are distinct, and the mj, j 6 j , are positive integers.

For purposes of abbreviation we may refer to the set of generalized exponentials associated

with the exponents A. and the multiplicities mj and denote the totality of such tI

functions by P(ij, j).

Let H be a complex Hilbert space whose elements are scalar functions defined on I

or, possibly, distributions, in the sense of Schwartz [27], with support I . We need not

specify the inner product ( , ) and norm 1I1 at this point hut if the reader thinks

of L
2 
[I] and the associated Sobolev spaces Hr[I] , r real, little will be lost (see

(1], [6] for exposition of the properties of these spaces). We require that H should

include all of the generalized exponentials (tk/kl)eAt.

Given H and a sequence P(AXjmj) of generalized exponentials in H , we are

primarily concerned with the completeness and independence properties of P(X., m.) in

H . We denote by [P(J, mi )] the closed span of P(% im ) in H , i.e., the smallest

closed subspace of H containing all finite linear combinations of elements of

[P(Aj, m )] . As usual, P(Xj, i) is complete in H if [P(Aj, mj )] = H .

Independence is more complicated, as there are a number of varieties of this notion which

must be considered.

Sponsored by the United States Army under Contract No. DAAG2O-80-C-0041.



Definition 1.2. The sequence of generalized exponentials P(Xj, mj) is

Ci) weakly independent in H if the convergence of a series

X k 0 jk Pj,k to 0 in H implies all coefficients aJA _are

zero.

(ii) strongly independent if no pjilk _belongs to the closed subspace of H

spanned by pj,k' (j,k) * (jl,kl); Mj

(iii) uniformly independent if for any series I J convergent

j E J k=i
to a limit p f H we have

2  D2 pl2 , (1.2)
d -2 1 i 2 4 I a l j , k  I H

H EJ k= 0

for some positive constants d,D.

If P(.., mn.) is complete in H and uniformly independent, we say that

P(Xj, ji ) constitutes a uniform basis for H . This has been called the Riesz basis ((31,

[18]). It is easy to see (cf [251, e.g.) that P(Xj, m.) is a uniform basis for H if

and only if, given an orthonormal basis B for H , there is a bounded and boundedly

invertible operator T : H + H such that T(B) = P(X., mj) . K
A generalization of the uniform basis concept is that of a uniform decomposition.

Definition 1.3 Let Pm , m E M , where M is a countable index set, be a sequence of

closed subspaces of H . These provide a uniform decomposition of H if given p c H

there exist unique vectors Pm ' Pm such that

P [ Pm (1.3)
m M

and, for some positive constants d,D

d-
2
lpfl Op 12 I C D

2
ffp#2 (1.4)

H E M

In the case dim Pm = 1 for all m we may define Pm be the unique vector of norm

in P m Then we have pm =ampm and

m M 1.5
m M

m M
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and we are back to a uniform basis (which, of course, need not consist of generalized

exponentials as in (1.2). Clearly, vectors P = yPm lyl, 1-1 bounded, also form a
plym

uniform basis.

Given a uniform basis P = pm for H there is defined, in a natural way, a dual

uniform basis Q= {qm
} 

for H . If B is an orthonormal basis and T(B) - P , then

S=(T*) - 1 (
B

) .

Equivalertly, {q I is the unique element of H such that
m

1, Z= -m
(p=qm)H ' 

6 
m LX m (1.6)O,£ * m

This notion extends to uniJ.orm decompositions with Qm the orthogonal complement of the

closed subspace spanned by the vectors in P. , 2 X m

If {pm! is a uniform basis for h and p ( H , it is easy to see that p has the

convergent levelopment

P m amPm ' am (P'%)"m

Sliqhtly weaker properties are the following. If P - {pm} is strongly independent in

H and each p H has a unique series development

P [ m Pm (1.7)

m E M

stronaly clrnvrqenL in H , we will say that P is a convergent basis for H

Correspondi oly nne can define strong decompositions of H , requiring the Pm to be

strongly independent when P. ' Pm and the existence of a unique development (1.6).

It is customary in the case of Hilbert spaces to identify H with its dual space, but

this is certainly not obligatory. Much of the work of J. L. Lions and his school is based

on a different representation of the dual space H . See e.g. [15], [16]. In our

applications of this procedure the "central" space is H0(I) = L
2
(I]. Suppose a second

Hilbert space V , in practice usually one of the Sobolev spaces Hr(I), or a variant

thereof, is densely and continuously imbedded in H
0
(I) , i.e. V may he identified with a

subspace of fin(I) by means of a one to one and continuous injection map J = V + H
0

(I) .

Thus J : V + J(V) I H
0 
(1) , which we abuse slightly by writing V H

0
(). It is known

then that there exists another Hilbert space, V', with H
0
(T) V' such that V' is

isometrically isomorphic to V . (See PH(, [I] for details.) Further, a bilinear

-3-
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form (v,w ) may be defined for v E V , w E V' , equivalent to the inner product
when w E H0(1) , such that every continuous linear functional on V may be

(v,w) 0 whe I. sc hteeycniuu ierfntoa nVmyb

represented as

i(v) (v,w

where w is a uniquely defined element of V'

For our work in this paper the Hilbert space H containing the generalized

exponentials Pj,k(t) is always identified with V , In other applications H is

identified with V' , the dual space H' is identified with V (V is clearly reflexive,

being a Hilbert space). If the pI(t) are taken to be in H , the qm(t) are taken to

be in H' and (1.6) is replaced by

(pZqm) = 6 . (1.8)

If the pX(t) lie in V', the qm(t) are in V and

(q, = 6£,m . (1.9)

Otherwise, everything remains as before.

The relationship between sets of generalized exponentials and group/semigroup theory

arises very naturally. Given any finite sun

r'-i k X.y
a jk e t t I (1.10)

j J k=0
replacement of t by t + T maps this sum into a new sum

m - 1 tk Xi t

JE k=0 jkk ie tCI, (1.11)j E J k=0()jk t

and the 0jk are readily computed from the aj,k . The inverse relationship arises from

replacement of t by t - T in (1.11).

Extending this relationship to infinite sums of generalized exponentials is not

trivial: restrictions must be placed upon the Xi and the m. to realize the strongly

continuous semigroup property and the strongly continuous group property requires even

more. The central theme of this paper is the relationship between the uniform basis

property of P(X., m i) and the strongly continuous group property. This relationship is3 3

not yet complete in this paper but we are able to exhibit what we believe to be significant

aspects of it. It will be seen that there is a broad correspondence between uniform bases

of generalized exponentials for the Scbolev spaces Hm[a,b] and scalar neutral functional

-4-



equations of the form

(m)(t+b) c 0(m) (t+a) +

where + . indicates lower order terms in a sense to be made precise later. But this

class of equations is not adequate in itself and we are led to study neutral functional

equations having a more general form which we discuss in the general framework of "neutral

groups".

We are also interested in developing versions of the Laplace and Fourier transforms

that are appropriate for use with the Sobolev spaces Hm[a,b] on a finite interval

(a,b] . It will be seen that there is a very natural way in which these transforms may be

developed and that the resulting structure permits an esthetically pleasing and useful

representation of these spaces which facilitates study of completeness and convergence

properties of sets of generalized exponential functions.

-5.-
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2. Uniform Bases and Neutral groups.

We begin by defining the Sobolev spaces Hm[a,b] for integer m . The space

H
0 (a,b is simply L2[a,b] with the usual inner product ( , ) . For m a positive

integer Hma,b] consists of complex valued functions defined on [a,b] possessing

derivatives of order 4 m , in the sense permitted in the theory of distributions, which

all lie in L
2
[a,b]. The "standard" inner product in Hmca,b) is

f fb f) (t)g( ) (t)dt (2.1)

k 0 a

but this is not convenient for manipulations, as we have already explained in (J]. We

define in Hm[a,b] the inner product, equivalent to (2.1),

m b --

(f,g) C f M)(c) g (k)(c) + fb f(m)(t) g (m)(t)dt (2.2)
k=0 a

where c is an arbitrary, but fixed, point of [a,b) . The norm, of course, is

Ifl - V(f,f) . (2.3)
m

The dual space Hm[a,b]' consists of distributions having the form, where 6
(
M denotes the

Dirac distribution of order k with support {a) , c [a,b,
m - 1

S n k ) 
+ n (k )  

(2.4)
L c m

k =0 2
The first part is self-explanatory. In the second part qc L (ab] and, for

f (ma,b]

(f, nm & 6(k)) = fb n( Ct) f(m)(t)dt. (2.5)

a

In the case where m is a negative integer it is best, to avoid confusion, to

redefine m as positive and refer to the space as H-m[a,b]. For the definition, we start

with H-m[a,b]', which is H
m
(a,bl,

0

H-m[a,b] Hmra,b ] = (f m H[,b]f (k) (a) - f (k) (b) = 0 , k = 0,1,..,m-1}.

Then Hmna,b] is the dual of H-ma,h]' relative to L2[a,]. It may be seen to he

isometrically isomorphic to Hm[a,b) '/R where B is the suhspace of Hma,b]
' 

spanned by
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6 (k) 6(k) k 0,1,2,-.-,m-1. Its properties are more fully explored in (22].
a b

The theory of uniform bases of generalized exponential functions in L
2
[a,b] is

approximately fifty years old and very well developed. Originating with Paley and Wiener

[19], (31], it was initially concerned with the independence and spanning properties in

L2 [0,2sr of the sequences of exponential functions

e , . < k <, (2.6)

where the complex numbers X were taken to be "close" to the imaginary integers ki . In
k

some cases it was assumed that A-k = -Ak . The major emphasis centered on the question:

what is the largest positive number M, such that if

sup [Ak - kil = M < MI  (2.7)
k 2

then (2.6) forms a uniform (or Riesz) basis for L (0,27]? Increasingly large lower bounds

for M I were established by Paley and Wiener (19], [31], Levinson (14]. Levinson's

conjecture that M, =1/4 was confirmed by Kadec [111 in 1964. From Levinson [141 it is

known that one cannot take M = M1 =I/4-

Numerous generalizations of this basic result have been offered. It is easy to

replace (2.7) by

lim sup IXk - kil = M < 1/4
k+

retaining the uniform basis property. One first establishes strong independence, following

that with an application of the Fredholm alternative. (See[
2 3
], e.g:) Any finite

At kA

Xkt kt Xk t
1 2 n

collection e , e , , e can be replaced by the generalized exponentials

Xk t X t X t Aklt
k k 2 kkt1 1 t 1 n-I/1

e , t e , - , *" , t /(n-1)! e and this can be repeated any finite

number of times. However, none of the intermediate powers of t may be skipped. One may

select n complex numbers I ,2..., Xr, all distinct modulo the integers, and set

, nki + X, + E -
<  
k < , ,= , ,rJ k ,j

k k,j t  
2

and the e will form a uniform basis for L2[0,27] provided the Ak,j are all

distinct and

-7-
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lim sup 1E j = M

with M suitably small. (See [5].) Again one may replace any finite number of strict

Akt Akt Akt
Ak t Xk t Xk

1 1 n
exponentials e , e ,".,e by a suitably sequence of generalized exponentials.

One may allow duplication among 1 2X,...'A . The e must then be more severely
2 n k,j

restricted. (See Ullrich [30].) An excellent recent review has been offered by Redheffer

(21]. A very general theory, related to our notion of a uniform decomposition of X into

subspaces Xk as described in Section 1 is given in Schwartz (28].

All of these results trivally extend to L
2
[a,b] by replacing the "reference points"

ki , - k < 
w

, by ( L )ki , - < k < -

It has been known for sometime ([14], [28]) that if P(l,m ) is a basis for

L
1
[a,b] one may obtain a basis for C[a,b] by adding at most one additional exponential

function. The converse is also true. If P(.m.) is a basis for Cfa,b), then one may

obtain a basis for L1[a,b] by removing at most one exponential. In this spirit a recent

result [26], [22] establishes the following. If the exponentials Pj,k(t) , P(A.,m.)

form a uniform basis fox L
2
[a,b], and if a ,*,'.a are m complex numbers, distinct

and not equal to any of the A. , and if
m

p(A) = R l - , (2.8)
t=1

then the functions

(t)/p( , < k < ., = ,2,...,mj }
a t I
ee , = i,2,...,m

provide a uniform basis for Hm~a,b). In the other direction, if o1,32,...,, are m

distinct complex numbers included in the X. and if p(X) is aqain defined by (2.8 , theJ

functions

p(A )p (t), - < k < , j =
j jk 3

""iI .. ... II- "...-8- 
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form a uniform basis for H-m[a~b] .Both results may be modified (see (22] for details)

to include addition or deletion of generalized exponentials.

Having thus reviewed some of the important results regarding basis properties of

generalized exponentials we may now proceed to the central theme of this paper, the

connection between uniform bases of generalized expunentials in H
m
(a,b] and what we will

call "neutral groups" in Hmfa,b].

Definition 2.1. Let S(t) be a strongly continuous group of bounded operators on

Hm[a,b], m = 0,1,2, ... We say that S(t) is a neutral group in Hm(a,b] if the

of St) is the differentiation operator

(Ax)(t) = (A(x(c), x'(c), --- , x (m-1)c), x(M) .)))(t)

(M) (2.9)

= (x'(c), x"(c, ... , x (c), x~m
1
l))2

defined on an appropriate domain D(A) c Hm+I[a,b c Hm[a,b] . (We will show later that

the domain of A necessarily takes the form

D(A) = {x C Hm+ 1[a,b] I < x,n ) = 01 (2.10)

for a unique n E H+
1 
(a,b]'.)

An operator A of the form (2.9) is a neutral generator if A , so defined, does

indeed generate a strongly continuous group on Hmfa,b]

The "standard example" for n corresponds to what is usually called an m-th order

neutral functional equation. The generator in that case being (2.9) with domain (2.10),

where
m - 1

x,n> = x (M)(b) + n Cx(M)(a) + n x(k)(c) + fb xm)(s)dl(.)
k=0

(2.11)

v being is a normalized function of bounded variation on [a,b] such that, with V

denoting the total variation

lim V(\,(a,a+c]) = lim V(v,Cb-E,bl) = 0
E 0 E 0

See (7], (8], (17] for related existence and uniqueness theory. However, we will see in

Section 5 that there are neutral generators on Hmfa,b which do not have this form. The

construction involves the transform theory to be introduced in Section 3.

-g-
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The two questions which interest us the most are the following.

Question A. Let P(A ,m.) be a uniform basis of generalized exponentials for Hm[a,b].

Does there exist a neutral generator A as defined above, such that the generalized

exponential solutions of

dx(t,s) . A x(t,s), - t < , S c (s,b (2.12)

dt

are precisely the generalized exponentials in P(X.,m)?

Question B. Let A be a neutral generator on Hm[a,b] and let P(Xj,mj) be the set of

exponential solutions. Do the functions P(X ,m.) form a uniform, or perhaps just

convergent, basis for Hm(a,bl?

By an exponential solution of (2.12) we mean, of course, a solution of the form

k Aj(t+s)

x(t,s) = ((t+s) /kl)e , -" < t < , s [a,b] . (2.13)

In studying these questions it is convenient to have the following lemma at our

disposal, which allows us to study only neutral groups in L
2
[a,b].

m

Lemma 2.2. Let p(X) = amkX be a complex polynomial of degree m and let
k 0 M m k

p(D) = k am-k
D  

(D = d/ds)
k=0

m

k = 0 o 
k

Let n0 E H (a,b]' and let (A0 x)(s) = x'(s) on the domain V(A=
2H1 ,(m-

I )
l

(x L 2[a,bl ixE H [a,b], ( x,n 0 ) = 0}. Let (Am (x(c), x'(c), X. (C),

(in) (mn) xm+l

x (.)))(s) (x'(C), x"(c), "*" , x (C), x (*)) on the domain D(A m ) =

{x E Hm(a,b] Ix e Hm+
1 
[a,b

] , ( x,fl ) = 0 , wherem

nm = p(6;) * no c Hm+
1 

a,b]' (2.14)

Then A0  is a neutral generator on L
2
(a,b] if and only if At is a neutral generator on

Hm[a, b].

Before giving the proof we note that the convolution product (2.14) of the

distributions p(
6
,) and n. is defined as in [A]. In the proof itself we introduce the

convolution product

-10-
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n *

where n H M+ [a,h] and t e iiefiied on ( (t + ) HM+ (a,b] on a € s C b.

As we will see in Section 4, ij qpj riate definition of n * is
m

h " I(r) = C (t + *),n , a.e. (2.15)

On the right hand side of (?.15 we have the value of the linear functional

n , Hm+1[a,b1
' 

at the element (t + *) E Hm+1[a,b), the ( , denoting that value,

as is common in functional analysis.

Proof. Let us note that a linear map P Em 6 L
2
(a,b] + Hm(a,b] may be constructed as

follows. Given

1

= E Em , m(.) E L2 (a,b] (2.16)

M-i1

Pm + C H -,) where is the unique solution of

P(D)C = m , C k) (c) = , k = 0,1,...,m- .

The functions t,C denote the solutions of P(D) = 0 , (c) =

m (k)
P(D) = , c) = 0 . Standard results from ordinary differential equations show

that P: Em e L
2
[a,b) + Hm[a,b] is one to one onto, bounded and boundedly invertible.

Suppose A0  is a neutral qenerator on L
2
[a,b]. Let C' , L

2
[a,b] and let Em(t,.)

be defined by

m(t0-) = S0(t)&0
m , 

t 6

where S0 (t) is the group generated by A0 . When cV (A
0  D (A) for all
00

t so that

f t,*), 0 ) = 0 , t E (-,) . (2.17)

The equation
,15m(t,*) _ = i

dt A0  (

shows that is, in reality, a function of t + s , so that

m(t+s) • (t,s) s r [a,b], - < t <

-11-



defines a function in Lo
2 

(-',)" When &m E VCA & c H 0 and (2.17) gives,

xoc 0 0 xoc

in agreement with our earlier remarks

nO , m 0

0o

(We use the same symbol n 0  for the element of HI [a,b' and the corresponding

distribution with support in [a,b].)

Given Em and C c L2 [a,b], the map

P C,) +

associates with ,0 an element ;0 E Hm[a,b] We have

-0 m C0 + C1

as above. If we now let C(t) be the solution on (-",) of

P(D) - &m (2.18)

with 4(k)(c) _ &k, k - 0,1,2,**o,m-1 , then ;(t) - C t), t r [a,b],
0

C(k)(c) - ; (Ck)(c, k - 0,1,2,--o,m-1. Since (2.18) is the same as

p(5') * - C"'

when Emre D(AO ) (just those cases wherein C0 E Hm+1[ab] and ( p() * 0) we

have in that case

n * = - q p(6') * 0 * 
m

= Q .

Letting C(t,*) be the element of H[a,b] represented by
(M-1 ) Wm

V(t+c), ' )(t+c), m t+c), C (t + *))

we have, when 0  m+1[a,b] and (0,p(Cs) * ( ) 0

({(t,.), p(6') * n ) - 0

and

a(t,s) ts)
at a "

Hm+1
When i H o ( "

m+1 (m+l)
; =~s a VCt's)

at(as)m (as)m+1

-12-

i ..



Moreover

d kt) =(k+1)
dt

so that (tc (t),1 lI*.i

dt ((t'c)'C'(t'c)''**'*,C 1(t'cL'C C.)) -

(' (t,c), ;"(t,c), C. , m (t,c), C ( Ct,'))- AmC(t,')

The strong continuity, bounded exponential growth etc of 4(t,-) in Hma,b] can be

inferred from the corresponding properties of Cm(t,') and the familiar properties of

solutions of p(D)4 - Em . We omit the (decidedly unexciting) details.

The other direction is even simpler. Let satisfy

dt

For C, C(0,- ) e D(A we have

p(d) * no * ri p(61) C

so that, with C - p(') * C, - p(D)C

n0 *C0.
no0

(k+l) (t) (k+1) ts

Since )(ts) k = 0,1,..',m-I , it is a simple matter to snow
3t(3e)

k  
(a)~~

that
aC(t,s) - (~s

at as

Thus satisfies

dC(t,')=
dt A0Clt,' )"

Again the regularity properties are easily developed from those of and the fact that

C * p(D)C E is one to one, onto bounded and boundedly invertible on Hm[a,bl/ker p(D)

to L
2
[a,b]

The proof of the next lemma is omitted being similar to the previous one and a result

in (221 ,(261.

Lemma 2.3. Let P(A, m be a collection of generalized exponentials, pi,k(t) =

(tk/kl)e , j c J, k 0,1, ... ,m.-1. Let the index set J be expressed as a

disjoint union

-13-
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J- U J
LA

and let X0  be the (closed) subspace of L2 (a,b] spanned by Pj,k(t), E JI

k = 0,1,...,m j-1.

Let p(A) be a polynomial of degree m in X and let Xm be the subspaces of

Hm[a,b] spanned by the solutions zj,k of

P(D)Zjk(t) = Pjk(t), j E Jt, k = 0,1,o..,m j-1 (2.19)

and let Sm be the subspace of Hma,b] spanned by the standard solutions of

p(D) z(t) = 0 (2.20)

Then X , 2. E A , form a uniform decomposition of Hm[a,b] if and only if the

X0 , 2 = 1,2,3,..- form a uniform decomposition of L2 [a,b] .

Remarks. By "the standard solutions of p(D) Zjk(t) = Pj,k(t)" we mean those particular

solutions of this equation which are found by the method of undetermined coefficients.

Thus if Pj,k(t) - (tk/k) el t and Xj is a zero of p(') of multiplicity m , the
tk+m

solution we are referring to is ( We exclude addition ofp

0 . Thus, if X L is the subspace of all solutions of (2.20),

m m In mX£ I / . .

Alternatively, Lemma 2.3 can be restated as follows. If the X£ , 2 are

spanned by Pj,k(t), , k 0,1,...,m J-1 , and if iAJ2, ..., jr

r k
m ,m ,...,m are such that k m = m, (tq/ql)e C P(jE Mj)Jl r k 1 I J

q 1m then the Xm I 2 form a uniform decomposition of Hm[a,b] ifJk
and only if the nontrivial spaces obtained from

0
X= p(D) Xm

form a uniform decomposition of L2[a,b].

We can provide a non trivial partial answer to Question A immediately. Question n

requires for its answer the transform theory which we will develop in Section 3.

-14-



Theorem 2.4. Let P(Aj,mj) be a collection of generalized exponentials as discussed

earlier. Suppose the index set J can be divided into disjoint subsets J,

- < X < , with the following properties

(i) There exists a constant D > 0 such that for j, E Je

Im(..) - Im (X.J) I 2D

(ii) There is an integer N > 0 such that J has at most N elements

X including multiplicity, that is, for all I.
J

[ m N N,
J , i£ 2

(iii) There is an M ) 0 such that IRe(X j) ( M for all j E it

(iv) The spaces Xy, spanned by thegeneralized exponentials pj ,k(t), j j.E

k = 0,1,.-.,m -1 , form a uniform decomposition of L
2
[a,b] . Then there

is an element n E H [a,bl' such that the Xj are precisely the

eigenvalues, with multiplicities mj , of the operator

(Ax)(s) = x(s)

defined on the domain

D(A)= {x C H [a,b I ( x,r ) - 0} , (2.21)

and A is the generator of a neutral group S(t) on L 2[a,b]

Proof. Let x2 , - < 2 < , be arbitrary elements of X and let

jEJ2  - 2 N£.-r

pI(A) = n (X j = a2. r a 2 0  = 1 , (2.22)
J E J r= 0 rX'

be a monic polynomial of degree N2  having the X as zeros of multiplicity mj . It is

clear then that

p2 (D) x (t) = 0 , t [a,b] . (2.23)

Moreover, X£(t) may be extended to t (-=, ) by extending the solution of (2.23) from

(a,b] to (-,") . Since every x , L
2
[a,b] can be written as

x = x

-2 2 2 2
c2HO 2 4 1Ix X I2 ( C 2Xl2

L [a,b I. L [a,b] L [a,b

-15-



it is plausible to suppose that x can be extended from [a,b] to (- , ) by extending

the x£ I But we need some estimates on the extended xI to establish this. Let

N£
w E be defined by

wzlt) w£ (t) xW(t)

W Mt) xi(t)

w (t) xi (t)

Then

(t) -A£ w Wt

where A£ is the Ni x N£ companion matrix

0 1 0 *. . 0
At0 0 1 **. 0

-aXNJ -atN9-1 -a., -2 -a,,,

the air being the coefficients in (2.22).

Then x (t) is a linear functional of the vector w (t) if h* - (1,0,0,...,0),

xt) = h w t)

In systems theory terminology, x(t) is an "observation" on w (t) . A well known result

(see, e.g. (24]) provides a formula giving xL(t), t arbitrary, in terms of x (s)

s E [a,b]:

x (t) he I f e h x(s)ds, (2.24)
a

where W is the so-called "observability matrix"

W fb eAz h h e A9 ds . (2.25)
0

-16-



I

Let t. be arbitrary. We claim that there is a positive number M(to), independent of

£ ,such that

II£ M4(t0)Ux Ii (2.26)
L 2[t 0+ a,t0 + b] L2 (a,b)

To establish this we effect the transformation

yX(t) = e xz(t) , (2.27)

where, from (i), T I is a real number such that IT I - Im(Xj)I 4 D , j Je .  The

transformation (2.27) is an L
2 

isometry from the subspace X1 spanned by the Pj,k(t),

j E J£, k
- 

0,1,-..,m j- to the subspace X spanned by the functions

k ( - iT- )t
pj,k(t) (t /k!)e i

j , k = 0,1,..,m j-1 I

If we can prove an inequality like (2.26) for the y (t), it is immediately established

for x£2 (t). Let Y(t) correspond to y£(t) as w,(t) does to x£(t) . Then

z (t) = A (t)

Y£X(t) = h z2X(t)

where h* is as before and A is the companion matrix associated with the polynomial
mj

= II) (X - (X. iT ))

The formula (2.24) becomes

y2.(t) = h e A I1 e h yX(s)ds. (2.2P)

a
From (i), (iii) in the statement of our theorem, the complex numbers X i

j Jt , satisfy the bound

I4. B = (D2 
+ M2) 1/2

with 4 independent of E . Toqether with the inecruality N1 X N this implies a botind

on the coefficients of pE , hence a bound on the matrices A£ 1 4P conclude that there

is an M0 , independent of X , such that

A t As Bti
Ihe W e hi MO e (2.29)

-17-
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provided only that the matrices

2 = e h h e ds

a
have inverses iX- uniformly bounded independent of I. But the pair (h*,A£)

h* - (1,0,o..,0) , L a companion matrix, is "observable" (see [24] again) in all cases

which implies ([24]) that W is invertible in all such cases. Since W
I 

is readily seen

to be continuous with respect to the entries of A2. and since those entries lie in a

compact set in C , N( N , we conclude that the W
I 

are bounded, independent of £
-I

From the boundedness of the W2  a result (2.26) for the y, , and hence for the x

follows. Using (2.29) we can see, more specifically, that there are positive numbers MO,

B such that

2x 2 0 2o.t[xf 2 (2.30)
1 L 2[t+a,t0+b] L [a,b]

Once we have (2.30) everything else follows quite quickly. Given x e L2[a,b] we write

X(s)- x X(s)

with

c-
2 

f l x
2 

2 4 1 R z C2lxl
2

2  (2.31)

La,b] I L2.a,b2 L 2a,b)

Each x L is extended to (- ,-) as a solution of (2.23). The result (2.30), along with

the fact that the spaces X are invariant, i.e.

X IL2[a,b] E X£ 1 > x[L2 (t0+a,t0+b
] f X,

allows us to use the uniform decomposition property to see that x t L
2
(t0+a,t0 +b] for

any t0  and, in fact, there must be a constant 1(t 0 ) > 0 such that

BitI
IxI 2 K(t )e 0 2

2 02
L [t0 +,t0+b] L [a,b]

We define the group S(t) by

S(t): X1L2[a,b] XL2(t+a,t+bl

-18-
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That S(t) is bounded, uniformly on compact t-intervals is clear. Strong continuity

follows from the fact that if we write

X(s) (S) + Z xX(s) x L(S) + XL (s) (or L [a,b] = L + XL

then the maps

S I t) xL2 XLI1 2XLI 2[a,b] L [t+a,t+b]

S L(t) L 2 a,b] L 2t+a,t+bl

are such that

S(tOx S (t)xL + S (t)x.
L L L L

The operators (t) are, as functions of t , continuous in the uniform operator topology
L

of L(R ,X , while )ur stxmates show S (t) uniformly bounded on compact intervals.
L I.L

Then, for lit,") [t-',t+61,

S- , (S (t+T) - S (t))x I I(S (t+r) - S (t))x
+L L L L

L L

- t - + 2 sup 2
x s r(t,6) XL

is easily usied to 'stihlish that

lim H(S(t+T)- S(t))xl = 0 , x , L (a,b].
I t

There remains the question of identification of the qenerator of S(t) and its

domain. The existence of a closed generator A follows from the general theory

(61,(121. Further, it is clear, from the translation property of S(t) that A must

agree with the differentiation operator on the dense subspace

x= , X, L
L=I

If we define

fx = ) xi
<£<

with

IB) :{x :x£ .' converges in L
2
(a,b]l (2.32)

-<19-
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it is easy to verify that R is a closed extension of differentiation as defined on

X Since A is likewise a closed extension of differentiation on X_ , it is only

necessary to show that these must agree. We begin by noting that the closedness of A

together with AxI = xi , shows that Ax = Bx for x , V(B) as given in (2.32). Thus

A D B . On the other hand, if x V(A) we can write

I = Xz , z'C Xz
-< X < .

convergent in L
2
[a,hl. Noting that A is invariant on each X , A* is invariant on

the dual subspaces

L k.k * z

each of which must belong to D(A*). For y, Ye

0 = (A yt, x - x2 ) = (yX, Ax - Ax)

.(y, z - x ) = (y., z. - xi).

k

Since this is true for all y E YX , we conclude z - x' X . Rut z - x
k. #. E- k£

X£. This is only possible if z,.  xi and we conclude that

is convergent so that x E V(B) and Ax - Bx . Thus B D A . It follows that A = B

on D(A) - V(B) as given by (2.32).

Finally there is the matter of the form of D(A). Lot a be a complex number not

included in the X. . Taking m -1 in Lemma 2.3, it is then clear that X and Xare
z ar

subspaces of H
1
[a,b], L

2
[a,b] spanned by the same qeneralized exponpntials. Since

I at I
X0 , here spanned by e , together with the X, I form a uniform decomnsition of

" [a,bl, we conclude that there is a unique element n H [a,b)' such that

(esc,n > = 1

x, 0, -'= < 2 < =

It is clear that (x , H (a,b] I (x,n) 0) is the closed span of thep I'k(ti in

H
1
[a,b]. It remains only to show that this is the same as P(A). This is clear, hOcauSe

-20-



{xIx = x convergent in L2 [a,b)
- < £ <

x x convergent in L 2a,b))
- < 2. <

is precisely (xix x, convergent in H [a,b)} which is again the closed span
< x <. -I

of the Pj,k(t) in H (a,b]. Thus

D(A) = {x t- HI[a,b] I ( x,T = 01

and the proof of Theorem 2.4 is complete.

Corollary 2.5. Let Theorem 2.4 be reformulated with P(Aj, mjI replaced by P(A., m ),

Jx 1, y Jx , and suppose Xm is the subspace of Hmla,b) spanned by pj,kt),

j E Ji, k - 0,1,-.-,m.-1. Let (i), (ii), (iii) hold with (iv) replaced by the

m
assumption that the X form a uniform decomposition for Hm~a,b). Then there is an

element E H 
m + 1

a,b
'  

such that the X. are precisely the eigenvalues of the
m3

operator Am: Hm(a,b] - Hma,b defined by
.,(m-l) (i)(mn) (+

Am(x(c),X'(c),.**,x (c) ,xM( ) ) (x'c) ,x(c), (,x (c) ,x (m +  
)) (2.33)

on the domain

V(A) - {x H [a,bl c Hm (a,b] I x,n - 01 , (2.34)- m

and A is the generator of a neutral group on Hi[a,b)

The proof may be sketched as follows. Let a102'.,oam be any m distinct complex

numbers among the X and let
m

p() = n (X - a k ).
k=1

Define the sapces

X= p(D)X

These are spanned by subsets of the generalized exponentials spanning Xm. Then use

Theorem 2.4 to find

A 0 : L 2a,b) L 2a,b]

00
with domain

9(A 0 ) = Lx H H
l a,b] I ( x.,n0 )= 01

-21-



for some 0  H [a,b)', A0  generating a neutral group S0 (t) on L
2
(a,bJ and having

{X, TJ} = {X.,j JIX l o k, k =1,2,..o,m}
(j k

and its eigenvalues. Then, using Lemma 2.2, the operator Am defined by (2.33) as the

domain (2.34) with

fm = p( ') * n
nm T 0

has precisely the eigenvalues . , 3 E 3 with multiplicities m3 and generates a neutral

group Sm(t) on Hm[a,b] . Further details are left to the reader.

It is also possible to state a similar Corollary for the spaces H-m[a,b) , taking

P(A , m ) as in Theorem 2.4 and deleting m generalized exponentials rrom that setJ 2

appropriately. The reader will have no trouble Carrying this out if he is interested. The

techniques required are similar to those used in [22).

There is, probably, a more straight-forward proof of Theorem 2.4. The essential

difficulties occur as the A., j & J£, are allowed to cluster together as j gets large.

Given A generating a neutral group S(t) on Hm[a,b], the element T) . Hm+1 [a,b]

whose existence has been established in Theorem 2.4, will be called the generating

functional, or generating distribution for S(t).

In order to answer Question B ,and from intrinsic interest, we develop in Section 3

versions of the Fourier and Laplace transforms in Hm[a,b]
'
, Hm~a,b], respectively, which

are particularly adapted to the study of questions of this type. Additionally, we wish to

set down the properties of these transformations here for use in later extensions of the

work of this paper.
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3. A Transform Theory for Hm[a,bl
'
, Hm[a,b].

The classical treatments of nonbarmonic Fourier series ((19], (14], [28], etc.) rely

heavily on the Fourier transform for the development and proof of theorems. We have seen

in Section 2, and earlier in [22), [261 that there are comparable theories for nonharmonic

Fourier series in the Sobolev spaces Hmfa,bJ. But how is this theory expressed in terms

of transforms? The answer is not quite trivial, and we will see in this section that a

combined use of the Fourier and Laplace transforms yields an elegant framework for the

study of all sorts of questions of this type.

It is notationally simpler to take the point c in (2.2) to be zero. Since every

interval (a,b] which we are concerned with in this paper includes zero, this causes us no

problems. Transformation of our results to other intervals is not difficult. For the work

of the present section we specialize fa,b) to (-iT,r), again no real restriction.

We have already introduced the Sobolev space Hm(-m,i], representing elements (using

c 
= 0 now) as

(in-1) (in) in 2

x = (x(O), x'(O),"..,x (0),x (')), x
m  

L (-I,T].

We choose to represent and think of H [-mir]'as a space of distributions y of the form

y = y 0
6
0 + y6 1 0 + ... + 6 (m-1) + (M)

where y0 , y,..',ym_1 are complex numbers, 6(r) is the r-th distributional derivative of

the Dirac distribution, 6o, with support {0} and ym 6 L2 (-r,. For x E Hm[-i,m],

y Hm[-T t, ]

m-1
(x7y (k O () ()dsx y " Yk x (0) + I Ym(S) x)(s)ds.

k=0 -T

The norm of y is

ilyll m lY + lYm (s)l
2 
ds]

H [_TI], k0 -
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Definition 3.1. We define the Fourier transform F on Ho[-i, ]
'

F(y,X) = ( pA'y ' PA(s) = e . (3.1)

Thus
r-1 k Am 

(3.2)

F(y,A) = m Yk + f e y(S)ds (3.2)

k=O -i
The linear space of all (obviously entire) functions s(A) = F(y,X), y E Hm(-w,wl]

'
, will

be referred to as F(Hm[-YF,T] ')- , the latter designation being used when the space

H" [-i,i] ' is understood.

Theorem 3.2 The transforms p c 0 have the following properties (X = + in):

i) (A) is entire;

(ii) for each real , the function of n,

S(T + in) L2(-) ; (3.3)SP( I + I C + i n l h 
m

(iii) * is a Banach space (in fact a Hilbert space) with respect to each of

the equivalent norms

Id 2 P real,
P Re(X)=p (1 + 1 IA)mr

and F:Hm-iT,iT] + ( = F(Hmt-w,7)) is an algebraic and topological

isomorphism with respect to 1 I1 and 11 II .

Moreover, an entire function ' E 0 if and only if

S(n) E (C + in)/(1 + I& + inl)m L 2(- ,) (3.4)

for some real value of and there is a positive M such that for all real

sup (n) (3.5)
(1 + ICI) /

2
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Proof. Most of these properties are immediate consequences of corresponding theorems

for F on L2[-2,W]. In particular, (i) and (if) are immediate from that theory and

the form (3.2) of P(X) - F(y,X). with

() f' e'
s 
Ym(S)ds (3.6)

-IT

the necessity of (3.5) for Re(M) = ) 0 follows from

Sin) I ym(s)dsl < f, lym(S)12ds) f I Ie2 (r) d./2

e -- - I -7r

M0 l(3.7)

where

up 2 (1+ i)
1/2

and a similar computation applies for E < . Setting z (s) = ey(s)

(E + in) (cf. (3.6)) e'z (s)d.

and the Plancherel theorem gives

1 2w (& + i-)22 m z 12 2 e 21rI YmN 22

from which it is easy to see, since each of the functions Ak/(1 + IAI) m ,

k - 0,1,2,...,m-1, is square integrable on vertical lines, that there is a B > 0 such

that (cf. (3.3))

-C I B e* ly, (3.8)
L ( ,=1 Hm(-w,w]

This gives part of (iii) and establishes the necessity of (3.4).

For the sufficiency of (3.4), (3.5), we suppose P(A) entire, satisfying these

conditions. From Taylor's theorem, with Yk= - (k) (0)/k, k = 0,1, ., m-1,
m-1

¢(P) = k + X, (X)

=k=0 kk+
and (3.4) 

gives
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m-1k

() + in) k 0 yk + in) 2S + i )= OL 2 ( 
=  ( 3 . 9 )

(+ in)m

as a function of n . It follows that there exists zm E L
2
(-, ) such that

+ in) = l.i.m fR eiSzm (s)ds (3.10)
B -R

1 ,R + -is-

Zm(s) = l.i.m j( + in)dn

Using (3.5) with a familiar result found in (14],[19], we see that the support of zm  is

confined to [-,]. Setting

z (s) e=i eYm(s)

(3.10) D c Ines

+ in) fi e
Xs 

ym(s)ds (3.11)
-IT

and a(A) is seen to have the form (3.2). This establishes the sufficiency of (3.4),

(3.5).

The only interesting part of the work is the proof that F
-1 : 0 H iP[-71 ,I] is

continuous. (The continuity of F is (3.8).) The proof we present here is based on a

complex variables argument but has much in common with the proof of Lemma 2.2.

Let r be the contour consisting of the two parallel lines Re(A) = p ,I

Re(A) - -p, P > 0 , the first oriented from n = - to n = ' the second in the

other direction. Let p(X) be a polynomial of degree m having no zeros on or in the

interior of r. For V E ,

(M = O(X)/plXl

is holomorphic on and in the interior of r 1 . Clearly

(X) B0  PO (pA)I x f u Inta 1 ) (3.12)

(I + I l)m1

for some B0 > 0 . Elementary computations yield
O -(y 0p' (0)

(0) = -I-- Y' ) ... (3.12)
et. ro tep(O) -O (O) )2 (.3

etc. From the Cauchy formula and (3.5)

(k) k f (d = 0,1,2,...,m-1 (3. 14)
( r) = Xri k+1 ,

-26-
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the convergence of the integrals following from (3.12) and (3.3). Since 1/X~ k+ L 2(

for k = ~,,*,-,the Schwartz inequality gives

B ( k 11 Bk 2 (r~ B 0B k(Roll + Voph)

kc = 0,1,2, *--, rn-i , with BOB1'..BM1 appropriate positive constants. From the

triangular arrangement of the equations (3.13) and the equivalence of I RI I U it then

follows that for some Bk > 0 , k = 0,11, ... , rn-1,

lyk 1 4 B k Pll , k - 0,1,---,m-1 .(3.15)

Next, let 0X) be given by (3.9). Then from (3.15) and the fact that

LAk- 2 L(r 1 ) k = 0,1,***,m-1, we conclude that E EL2(r I) and
rn-1

iI2 1 b(R -l ~ ykI
L (r 1 k Ic0

for some pjositive constants b , b k' k = 0,11, ---, rn-i. Applying the Plancherel theorem to

(3.11) on Re(X) = p and ReM - p then gives, for b > 0',; > 0' k m ,,..r-1

llml2 b Moll + I ;k 'yk' (3.16)
L. [-7t,ir k-0 '

Combining (3.15) with (3.16) and our definition of 11 1 we see that

-1 14M -rt)
0 + W

5
-~i is continuous. The proof of Theorem 3.2 is now complete.

If the interval C-7T,lr] in Theorem 3.2 is replaced by a general finite interval

(a~b), very little in regard to the space Hrn~a,b1l and F(Hm(a,blJ) changes. In fact,

the only change is that (3.5) is replaced by

Mebt 3.b

sup I(n) 4 (1+1 , -0(.h
Me E<0(.a

(1+ 10)/ (35a

If A qenerates a neutral qroup S(t) on Hm"'a,b] and n r H M+1(a,b]' is the

generatinq functional, the characteristic function for S(t) (or A )Is

4N)-F(n,'X) .(3. 17)

T17js aqrees with the usual definitions. When q~ is given by (2.11)
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mbA m &Am-1 k Ac
() me + Y0 Xea 

+  X e
k-O

+ m ' e d,(s) I HM+ [a,b
]

a

and can easily be put in the standard form (3.2) with m replaced by m+1

We turn now to a dual transform, or perhaps we should say a class of dual transforms

for H[(-R,] ' The transform theory for functions x c Hmf-w,n) is, in general, rather

poorly developed. The problem lies in the fact that use of the classical Fourier-Laplace

transform

)(A) J e x(s)ds
-5

does not lead to a transform X(A) whose properties readily reflect the differentiability

of x E Hm(-iiro; the behavior of X(in) as fIr + - is dominated by the boundary terms

associated with s = a, s = b. It is clear, of course, that one could trivially modify

the F transform, as defined above for HMC-1r,f' , and let

X(A) = x(G) + Ax'(O) + ... + A m-lx(m1)(0) + Am f e Sx(m) (s)ds

but this yields nothing new as compared with F on Hm[-n,,tl
'  

It is not well suited to

our work here.

The reader will recall that when the Fourier or Laplace transforms are used to solve a

partial differential equation such as, e.g., = 2 on a finite interval with certain
ax

boundary conditions applying at the endpoints of the interval, it is common to extend

y(xt) to - < x < - , where possible, by use of symmetry relations suggested by the

boundary conditions. This is the essential idea of what we do to construct transforms of

elements in H (-,s1, the symmetry relations being replaced by the conditions that the

function x . Hm(-, be extended to HO(-,) as a solution of a nPutral functional
loc

equation. Since there are infinitely many neutral functional equations which one could

employ for this purpose, there are correspondingly infinitely many transforms. But we will

see that this multiplicity of transforms serves well to treat the wile variety of possible

expansions of x in terms of uniform bases of exponentials.

Let S(t) be a neutral group on H
2

(-iir with generator A of the form (2.9). We

make no assumption here about O(A) , Hm+l (-r,ff except that it be dense in that space

and such that A is a neutral generator. This rules out, e.g., domains associated with
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retarded equations such as

rn() -i ()(0
D(A) = {x E H

m + [- ix x()() = I akx)(0) + f a(s) x (s)ds)
k.0 -I

since A generates only a semigroup with a domain of this type.

Given x = x(s) in Hm[-ii], we define

x(ts) = (S(t)x)(s). (3.18)

By virtue of standard semigroup theory we know that x(t,s) exists and belongs to

Fl
1 -r,i] for -- < t < - and there are positive numbers M+

, 
M-, real numbers y+, y-

such that (cf. [6), [12)
+4

M+ey tfxi , t ; 0

Ix(t,.)Il (3.19)
Hm -1 ' ] M eY t xI , t < 0

HM- -7, ]

Further, we know that when x e. V(A) C Hm+ 1 
[-,,r], x(t,) E Hm+ 1 -

gr
]  

for all t and

d x(t,-) = A x(t,-) •

From the form of A , it is clear that, for x E 0(A) ,

xA(t) E x(t,0), < t < 0 (3.20)

is such that xA agrees with x on [-,,] , and thus represents an extension of x

from (-w,] to (-,-) determined by A - and hence by D(A) since the functional form

of A itself is constant.

Proposition 3.3. The function xA(t) has the following properties:

(i) XA E tr[tl,t 2] on any finite interval [tlt 2] , i.e., XA H m (-c)

(ii) with y+ ,- as in (3.19), e t ( Ct) rc LP[0,) for

Re>(,) > c LP(-O,0] if Re(X) < Y, 1 p 4 -, k 0,1,...,m- ;

M+eY tflx m , t ) 0

(iii) Ix I < (3.21)

H H([_s+t,+t] MeYt lxi , t 0

Proof. All of these properties follow readily from the fact that, for s [t-7,t+ ]

XA(S) x(ts-t) = (S(t)x)(s-t)

and the estimates (3.19).
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Definition 3.4. The LA-transform of an element x E Hm[-r,w] is the Laplace transform

off xA , defined by

f - e-XtxA(t)dt, Re(X) > Y+

LA(x,A) = (3.22)

- f A e-XtxA(t)dt, Re() < Y-

and extended to other values of X as described below.

-1
Thereom 3.5 The operator A has compact resolvent R(k,A) = (XI - A) , defined in

P(A) the resolvent set for A , which consists of the complement with respect to the

complex plane of a countable set of points, oC(A) c {Xly- < Re() 4 y+) . For each

x C m_ ,

LA(xX) = (R(X,A)x)(0) (3.23)

and is thereby extended, as compared with (3.22), to a meromorphic function of X

analytic on P(A)

Proof. We begin with (3.23). Since A generates a group S(t) on Hm[-it] , for any

complex X the operator A - XI generates a group on Hm[-n,w],

S(X,t) = e- tS(t) .

Now let x E D(A). Then S(X,t)x E V(A) = D(A - XI) and

ddt S(X,t)x = (A - XI)S(X,t)x = S(X,t)(A - XI)x

Using the fact that A , being a generator, is closed together with the convergence in

Hm (-7r,ir] of the integrals
+

S(X,t)(A - XI)x dt, Re(M) > Y , (3.24)
o

fS(t)A- XI)x dt, Re(X) < y- , (3.25)
0

+
we see that, working with the case Re(X) > y

fJ (A - XI)S(X,t)x dt =f S(Xt)(A XI)x dt =

0 0

S d__ S(A,t)x dt = lie S(X,t)x - S(A,0)x = -x
0 t
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Since this is true for all x c V(A) and since A is closed, S(X,t) bounded, D(A)

dense in Hm[- ,7]

(A - AI) f S(X,t)x dt = -x x ' H m-7r, I]
0

A similar computation applies to Re(A) < y Thus

S(A,t). dt = (AI - A)-Ix, x c Hmf-l,T], (3.26)
0

for Re(X) > y or Re(A) < y Now the range of A is contained in H 
m

[-ri
] ,  

so

we conclude that the integral on the left of (3.26) is in that space. Since 6(0) is in

Hm+1 [_,

(6) S(X,t)x dt ) ( (A - XI) x ) = ((A - AI) x)(0)
(0), 0(0),

It is easy to see that

( (0) f' S(A,t)x dt ) = 0 (S(A,t)x)(0)dt = 0 
e-t x A(t)dt = LA (xA) [3.27)

if m ) I , or for x e D(A) when m = 0 . But the last integral is continuous with

respect to NxOl even in the latter case. Thus (3.23) is established for

+ L 2 -7r,1TI
Re(A) > y . A similar argument applies for Re(A) < y

That R(A,A) is holomorphic in p(A) is a standard result, see e.g. (6]. In order

to show that (lI - A)
-  

is compact, we show that if

W = (w E Hm[-lr,] 1w = (XI - A)- z, z E Z bounded in Hm[-7,f] }

then W is pre-compact in HF-T]. From the form (2.9) of A , w - (AI - A)-z , or

(XI - A)w = z , gives

w (a~l) (s) - Xw (m) (s) + z (m) (a) 0 ,s ( -,, ] • (3.28)

w (k+1)(0) - Xw(k)(0) + z(k)(0) = 0 , k 0,1,2,o,m-1 . (3.29)

If m - 0 , (3.29) is void.

For Re(A) > y+ we have, as we have seen

w(0) = (Xl - A)-Iz)(0) = e
t 

zA(t)dt
0

and then (3.19) gives

jw ( ) S M+Hnz! e -(2k-1 17r Re( A e Y+21i

H [-Tr'W] X=0

(3.30)

B 80 ( M n -7,ll
H [-31-j
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We conclude that if Iz is bounded, then Iw(0)I is bounded. Since jzk(O)I

H f-sfir]
NZ| , k - 0,1,2,'..,m-1, (3.29) may be used successively for k =

H I-1T,711
0,1,2, --o,m-1 to see that

,w(k)(0)I 4 Bk( k )Rz , k = 0,1,2,...m . (3.31)

Combining (3.31) with the differential equation (3.28) for w(m) we see that the elements,

w, of W are such that w
(k ) , 

k - 0,1, ...,m are pointwise bounded, w
(m+ 1 ) 

is bounded

in L 2[-1,1T], when Z is bounded and it follows that R(A,A) is compact for
+

Re(A) > Y+ . A similar argument applies to ReOM) - and the "resolvent identity"

(cf. (6])

((X + I)I - A)
- 1 =  (Xi - A)- (I + (XI - A)

- I
1

then shows R(X,A) to be compact for any X E P(A) . Familiar results on compact operators

(61 shows that

((I - A) x)(O) - (R(A.A)x)(0)

is meromorphic, having a countable set of poles of finite multiplicity in 'y- < Re(X) < 7
+

which have no finite accumulation point. Since we have seen that (3.23) is true for

ReMk) > Y+ , Re(M) < y" , that formula may be used to extend the definition of

L A(x,X) to p(A) . The proof is now complete.

It is natural to ask if every neutral group on Hm[a,b], having a generator of the

form (2.9), has associated with it a unique generating functional n , Hm+la,b]
'  

such

that D(A) is the subset of Hm(a,b]
' 

given by (2.10). The answer to this is in the

affirmative. We use Hm(-ir,ir] for the proof here but the extension to other intervals is

immediate.

Theorem 3.6. Let A , having the form (2.9), be a neutral generator on Hm[-7,,' . Then
Hm+1

there is a unique n H [-5,]' - H m-1T.i)]' such that Oin#l = 1 and V(A)Hm+l[1 ,]

has the form (2.10).

Proof. The proof is much the same as that given for Theorem 2.4, sliahtly abstracted here

because we do not know, a priori, that we have any uniform decomposition to work with.
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Let A be a neutral generator on Hm[-1T,r), let xA(t) denote the extension of

X c EM -n,ff] to (-, ) as described by (3.20) and let M*
, 
M-, y +, y- be as in

(3.21). Let us note that each x c H m+(-nr can be uniquely represented as

x - (x(0), x'()), x' , Hm[-,]

and

- 2x(0)12 + ix,1
2 
m

H I-7r,1TO H [-w,Tr

+

Let a be a positive number greater than y Let

z(t) - x'(t) - ax(t), t E (-ir,TlJ (3.32)

z A(t) - (X A)'(t) - a x A(t), - < t < . (3.33)

Then z eHm[-w,w]. Let us define, for t E [-7r,T]r)

x(t) - - f (e(A - aI)s eAtz)(0ids

0
At -1 At

= -A~e za) ((A - aI) e z)(0) (3.34)

= (eAt(A - al) -z)(0) - ((A - aI) z)(t)

and let X A(t) be defined similarly for t E (-",=) , extending x(t). The fact that

a > y+ ensures the convergence of the integral and the boundedness of (A - aI)-I

Since

(A - al)
"I 

eAtz = e At[(A - aI) zI

and (A - aI)-Iz c D(A) c H m+1[-,i] , we conclude that x(t) is strongly differentiable

with respect to t and

x'(t) - a x(t) - (A - aI)x(t) = (e tz)(0) = z(t), t (-[~,,T1 (3.35)

the relationship extending to

(xA P(t) a xA (t) = zA(t), t (-,1 . (1.36)

Let

x= x + x . (3.37)
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From (3.32), (3.35), (3.36), (3.37) it follows that

x,(t) - ax(t) = 0 , t c [-Tr,n], ( A )'(t) - a A(t) - 0 t E (,)

It follows that

at' at
x(t) = e x(0) = e (x(O) - x(O)), t E [-T, ],

- at- at~xOAA
x A(t) e eat(0) =eatx0 x(0)), t C -,®

we see therefore, that every x E Hm[-lW] can be uniquely written as a sum (3.37) where

x has the form (3.34) for z = x - ax E Hm[-Y7,r and

at at -
x(t) = e (x(0) - x(O)) = ea (x(0) - ((A - aI)- z)(0))

= at (x(O) - ((A - al)- x' - ax))(0)).

If we let X be the one dimensional subspace of H 
m+ 1 [ - iT,] spanned by eat and if we

let X be the range of (A - aI)-1(D - aI) P in Hm+(-Ir,I] (D is ordinary

differentiation, D - aI: H m [-1 ,[1] H m-i,]) , and the range of (A - aI)
- 
1 is in

H 
m+ [-

?,T]) . Thus

x = (A - al) (D - aI)x Px

x(t) = eat((I - P)x)(0) , x Q x

It is easily seen that P and Q are projections, not in general orthogonal, such

that

PQ =QP =0 , P + Q = I

Correspondingly we have dual projections P*, Q* onto dual subapaces X, X in

H
m+ 1 

[-r,T] '. The space V is one dimensional. Let n be the unique element of unit

norm in V • Then

(x,n = 0

for all x X while

(ea, ) 0 .

We now show that

D(A) = X {x HM+1-,1Tl (xn ) -0 }
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r.

The second equality is clear. As for the first, it is enough to show that X - range of

(A - aI)
"
'. But this fJllwj because, if, x - (A - aI)

-
', (D - al)x (A - aI)x and

Px = x . That n j }[-f,,1T' follows from the fact that RA - aI')
-  

= V(A) is dense

mm
in H [-iv,l] .The proof is now complete.

Theorem 3.7. Let x H H-,,1 and let

,;(x) = LA (x,,X)

be the LA-transform of x . Then

*(X) = M0 (X) + I(M

where * (A) is a polynomial oC degree at most m In I/A with no constant term:
- 0

+X) = + ... + O
m  

(3.38)

i7

and (X) is a meromorphic function of ) , holomorphic outside 0(A) u (o} and having

the following properties;

(i) with ) =X + in , there exists M(p) > 0 such that

1(1 + I + i "1) $( + i')! 2  ( M(0)Ix#H -ri](.9
L 2

m - W  
(3.39)

+
P p > Y , P -p < 'Y

(ii) Let r = r. 11 r be a contour consisting of the small circle, r.

centered at and lying In p(A) together with

1I = ( + j-ni- < n , * p, p > max(y ,-y_)}

both oriented in the positive direction. Then
eXt 0 ) A  1 et%1)

x Ct) = e*(A dA + -- I 
f  

e A)dX (3.40)
A 2ri 0 21Ti 1ro  rIr0 1

the first inriyral being void and the second taken in the l.i.m. sense if

m = 0 . nofining
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ip = 2 (X)I21dXl + f (1 + IXl)m(%(X) 121dX1, (3.41)
P A 0

LA +H ' 0A( L A(Hmj-7
'
,fl) is hounded and boundedly invertible.

(iii) Let y E Hm[-,r] ' with F-transform 4(X) . Then IK
(x,y f = (A) O(X)dX + PX (()dX) (3.42)

21Ti r 0 2d r 1

independent of the particular operator A used to define (A) = A (x,X)

Remark. It is also true that

xA (t) = 2 I e tl(X)dx (3.40a)

in the l.i.m. sense, but (3.40) is absolutely convergent and yields more information

about the behavior of xA(t)

Proof. Since

) J a e -
t x A(t)dt, Re() > y+,

0
and since xA(t) has the properties noted in Proposition 3.3, we may integrate by parts

repeatedly to obtain

x(O) + x(0) + + x(M-1) (0) + I r eIAtx(m)(t/dt
=-A- +""+ Xm ' 0 A

(3.43)

- (o{) + 41(A) •
0 M 1

A similar computation is valid for Re(M) < y . Since i40(X) is holomorphic except at

0 and ' (A) is holomorphic outside 0(A), p1 (A) is holomorphic outside a(A) (0) as

claimed. Also from Proposition 3.3 we see that
+

e- t x(m)(t) L2 (0.)

and then
,-(X--Y* + 0- (m)

(1 + X>jm %(A) 1+ I m ) f= e -)t -y t X (t)dt (3.44)
m 0 

A

is, by virtue of Plancherel' theoroit, square inteqrable on an' vortical lino in the -ompIx

plare lying to the right of Re(-) = . A similar result holds for Re(A) < y . The

inequality (3.39) follows from the boundedress of (1 + Plan/hm nI s
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theorem and (3.44).

Formula (3.40) is just a modtPication of the familiar Laplace inversion formula. For
+

Re(1) = C > y we have

l.i.m. ~ e(+lq)tp( +in)dn R 0 , t<0

R-R x(t), t 0

and for Re(M) < y we have

- ~~~ ~ ~ Re(+nt(+ A(t) ,t 0

l.i.m. e(+in)t +indn 0
R TR 0 t > 0.

(The situation at t = 0 as actually slightly more complicated but those complications

have no bearing on what we do here.) Thus if rl,, consists of the two line segments

+

r = {C+in)R =p > Y , nl < R}
1 ,R

({+inIC = -P < - , in ] R}

we can write,CA t) l.i.m. - f e t (A)d2 =

A R'* 21Ti
1,R 

3,

R

(3.45)

= l.i.m. [ - f eAtP0 (X)dX + f f elt¢1(X)d ] •

R + 2 p,R 1Ti ,R

Since i1(X) has the form shown in (3.38), (3.43), the integral of eXt p0 (X) over paths

joining p + iR to -p + iR, -P - iR to p - iR, tend to zero as R + and (3.45)

gives

x (t) = 1 A r e X)dX + f eXtP (X)dX • (3.46)
A 27yi j. 021Ti

0 1

When m 0 the first integral is void and the second must still be interpreted in the

l.i.m. sense. Thus (3.40) is proved.
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That the right hand side of (3.41) can be bounded by a positive multiple of

IxI follows from (3.19), (3.44) and the form (3.43) of *0(A), together with the
H -1TT

fact that M Ix (k)(0)1 2 4 RxH The estimate in the other direction is
k-O Hm(-I,1]

obtained by noting that PlancherelIs theorem allows one to bound Ix(m)1 2 in terms of
L [-lr,1]

(1 + IAIm) I(A), and the Schwartz inequality applied to

x (k)(0) _ 1 f Ak *o(A)dA

M-1

m.(k)(..12
enables us to estimate Ix in terms of the first integral in (3.41). We may

k=0

regard (ii) as established.

Finally there is (3.42) to prove. Let

y = (y0,Y ...,y Hm (-t,W]

and let P(A) be its F-transform, as discussed earlier. For

x = (x(0),x'(0),' , -),x(0 ) (.)) H -- ,]

we have

(x,y> = I yxk (0) + fl Ym(s)x ()(s)ds. (3.47)

kfO -IT
Letting i be the LA-transform of x , the estimates (3.8), (3.39) allow us to form

I f vm (A) dA +--f ()()d
2iri r oA) 0  +271. r ,Al 1 ~d

I k

2ir o  I I ykA + AI f' eAS m(s)ds]oax
M-1

27ri r 1 kffi _-1

0

-1 f [ ykAk + Am fe~msd]lXd
r I k0 -iT

Differentiation of (3.40) with respect to t shows that

I M 1 Ak)t,o(A)dA +I m-1 k) 4i f ( k 0 _r-- f yk +(Xd
r 0  k=O r k=0

m-1 (k) (3.48)

kjo Yk x J(0)-
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The term

1 Xm f' eX y (s)ds)*O Ud E 0 3.49)
m o f 349

because A %(A) and eAs Ym(s)ds are holomorphic inside r . Finally we note that

f e Y(S)ds and m1(A) are both square integrable on r ' so the product is

integrable and

2i f  e f e yM(s)ds (A)dA
r -IFP

J lim j f f eASym(s)ds l(A)dX
R 7r r p,R  -71

lim fIf m(sdi 1 f AmeS* (X)dX)ds
R
+
f -2 rPR

n AmeX'S 1 (X)dXd 4
- 2i j r

PR

f Ym(S)x(m)ls)ds, (3.50)

the last two steps being valid because -- f me a,, (A)dA converges in L2 -,]to

P,R

X(m)(s) - using the Laplace inversion formula with
m ( ) r f -Xs ( ,m)(s) x(m)( ), s

e xA (s)ds ,C) fin)[-,,
1 0 A A()=x Cs, s (iir

Combining (3.48), (3.49), (3.50) we have (3.42). Since the left hand side of (3.42) is

independent of A , the right hand side is also. With this, the proof of Theorem 3.6 is

complete.

The fact that (3.42) is independent of A , more accurately, independent of V(A),

enables us to define the L transform of x c Hm(-lt,wl as a certain equivalence class of

meromorphic functions.

Definition 3.8. For each x c Hm[-r,], the L-transform of x , L(x), consists of all

functions (X) (not necessarily obtained by means of (3.22). (3.23) for some A ) which
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are holomorphic on r for some p > 0 , meromorphic in the interior of I , and have

a dec position

- *0 (A) + I( )

with 1O(A) of the form (3.38), Am l(A) square integrable on r and such that, with

J(X) M( (X) + *1 M)= Li(xA)

for A an arbitrary neutral generator on H M[-,,rl

1 0 r1

for all o E F(Hm[- ,l').

It is clear that L(x) includes every function LA(x,X), A neutral generator on

We can define a norm on L(He[-it,TI]) by

*L(x) sup I O f (X)* 0 ()dX + 1 f (X)1 (X)dAj

XP 21ri r 0 27d. 1
P 0 1

m
and it may be seen that with this norm L: H

5
(-,7T] + L(H [-lr,T] ) is bounded and

boundedly invertible.

It should be noted that (3.42) is not true for all holomorphic (X) for which

(3.42) is convergent, but only for o E F(Hm[ -I]'). Consider the following example.

Take m = 1 , let A be differentiation (2.9) on H 1-r,n] with domain

V(A) = {x E H2[-iT,r]Ix'(T) =x'(-w)}

Let A be the same operator but with domain

D(A) = {x E H 2[-r]Ix'() = -x'(-r)}

Let

X M f31T Xe - dt
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Then, with i(X) i 0(A) + JI(A) being the LA transform of x c H
1

I-,], with

x(n) = x(-n) = 0 , we compute

I f P(A)* (AdX + -i f O(X)* (X)dX = f
3
nx (t)dt = fx'(t)dt

r0 1I "-

while, letting (A) (A) +;L
A

1 1 3,r

2i- P I (AO( ) + ( -A) U 2(lIw(A)dA = x'(t)dt = (-x'(t))dt
r 0  r 1A -T

The behavior of the integral (3.42) for & which are F transforms of distributions with

supports extending beyond (-r,T] will occupy us extensively in Section 4.

One of the reasons why L(x) is defined so broadly in Definition 3.8 is so that we

may assert that

L(H m l [-iil c L(Hm[-r,.] ). (3.51)

If L(Hm+I[ -i,R),3

LL= 's' + X2 + ... + +LXm [ ~ )

- () Lm[_,

according to our definition. To work with LA(xX) would be difficult because if A is a

neutral generator on H
m+

1 [-n,7r] and if, for x H 
I 

1-,wr], we extend x to xA and

obtain L A(x,X), there is not, in general, any A a neutral generator on HmI-r,7) for

which x xA and we cannot, therefore, say L A(x,A) - L (x,X) E L_ (Hm(-Y, ]) if
A A A

(3.51) is to be true, L(Hm[-iT,w ) must consist of equivalence classes of functions more

general than those of the form LA (x,).

Let A be a neutral generator on Hm (-,iT] and let n be the associated generating

functional in Hm+
1
(-Ir,' , whose existence has been establisheAi in Theorem 3.6. Let

x fHm(-w,w and let (A) = L (x,A). The poles of (() occur only at values Xj
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which are eigenvalues of the operator A . If A is simple, the associated eigenfunction
A.s j A s

of A must be e If A has multiplicity mi-, then a se
A s rn-i As

(s2/2)e ,..., (s /(m.-1)l)e are associated generalized eigenfunctions andJ

m k-1 Xjs m (k-1 s

A( k (k-)! e ) k e

k- kk11 k-1 k(k-1)1

1 *•. 0 0

2 a 2  A o.. 0 0
= A. , A. = " "

0 0 .. A
mj am 0 0 0 O0 A

because A agrees with differentiation on its domain. These properties are all reflected

in properties of the generating functional n and its F-transform, (A) - F(n,A). A

simple eigenvalue, Ai , for A corresponds to (A) = (eAs, ) having a simple zero at

A., while an eigenvalue A of multiplicity mj is such that (A) has a zero of

multiplicity mj at A . The equations

k-1 A s
(s e ,) =0 k =1,2,...,m,

(k-i)1

are the same as

1 d k" 1 (k-1)(A )-- ( e s n ) ST (XA 0 , k - 1,2,• ..,mj
(k-l)1 (ds) ..

We show now, at least for a certain class of generating functionals A , that the

poles, with their associated multiplicities and residues, of *(A)- L (X,A) correspond to
A

expansions of x in terms of exponential, or generalized exponential bases for

Theorem 3.9. Assume that the region, R enclosed by the contour r, of Theorem 3.7 can

be divided into subregions Rj - < j < - , by means of paths cj joining the line

Re(A) - p to the line ReCA) = -p , oriented in that direction, so that c . the portion

of Re( ) = - between cj and cj1 , -cj. 1 and the portion of Re() - p between c,_ 1

and c form a closed contour Cj surrounding finitely many eigenvalues
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I

XJX J,2', . X.,' of the operator A the Cj having disjoint interiors. Assume

further that for each x c ?f-ri], with W(P) - LA(XX)

lim f IXm*lJ1(X)Ildtl - 0 (3.52)

Then, letting mj,£ be the multiplicity of xj,x, I - 1,2,...,nj we have the unique

representation, convergent in Hm(- rr

x x (3.53)

n m k-1 A 8

x (s)- ( e )

1 1 - k J, (k-1)1L-1 k1l-

where _( is the coefficient of X-k in the Laurent expansion of *(X) about the
_k-1 i

pole . Thus the spaces Xj spanned by the functions eki)!'' " (k-1)! i

.1 . 1,2,.o.,n. , k - 1,2,°..,mjX , form a strong decomposition of Hm[-W, .

Proof. Very little is required here except the inversion formula (3.40), which for

s E [-if,n] reads

1 As e M' o d " + f J e s M

x(s) r- 0 r I
the significant work lies in verifying (3.52), which leads us to the work of Sections 4,5.

We may assume the circle r chosen so small that it excludes any non-zero

eigenvalues of A . If A 0 = 0 is an eigenvalue of A of multiplicity m0 , the first

integral becomes
mo k-1I

S

k-1
We write r, = r, j +r I' for each j , where r?'j C * Then

1 eXs 1 f e X (A)d f As

2,i f 21Ti 21Ti e
r r
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The first integral, since it encloses finitely many poles of MI(U), can be written as

Sn~ m, k-i A s( l-k(J,) k'!e (3.55)

i--j £1 k-1

where (1,k(A ) is the coefficient of k in the Laurent expansion of
(A- A j,)

about the pole Xj,, . Since 0(X) is holomorphic except at 0

*1,-k k( j,£)

except for the possible case of a zero eigenvalue. For that case the corresponding term

(0) ,(0) + 01,k(
0
) , the first term coming from (3.54), the second included in

(3.55). Thus

e NSo (A) d)A + 1 (A)dA
r2ri

,j, n, mt k-1 a

- k I-(il) (k)-1) e.
i--i L-1 k'-i

To obtain (3.53) it is only necessary to show that, with

1 f ekz

we have I,j

lim Ix I 0 . (3.56)j j Hm [1

Differentiation gives

(k)(s )  I eek l( )dA k

rl,

the validity of differentiation under the integral sign being assured by (3.39) of Theorem

3.7. Since eA is uniformly bounded for 9 a (-w,iT when Re() is bounded, the fact

that

lim f eA (A)dA - 0 , l X, - 0,.,m, (3.57)
27r C (C )
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uniformly for s [-ln], follows from (3.52).

Let us define ' (A), x r * by

Ir 1TAX1) = I 1' , 1  1,

] 0 1 1  - 1't j

Then x (s) is equal to the sum of the integrals in (3.57) plus the sum
1 1 k (s5k)

f,2 e -d + f eA ()d (3.58)2wir k (dA+27ri P 3
1 1

r + - {liRe(A) = p}, 1' - (iRe(X) = -p} . Writing X = + in , the first integral is the
11

k-th derivative of the inverse Fourier transform of T (p + in), - < n < , multiplied

by e
p s 

. Since Ak 1 (A) ( L
2 
+ k - 0,1,2,...m , the Plancherel theorem shows that, as

rI

a function of s , the first integral in (3.58) is in Hm(-OO) • Since the cj tend to

infinity as I *J , it is clear that

is k
lim Ie (p + i) kT (p + i)ll 2 = 0 , k = 0,1, ,m,
J+ Lr+

and, applying the Plancherel theorem again

lim I f e A xk (A)dfl lim If +e x 1 ()d k = 0,
J " I ( 3.•59 )

k

A similar result is obtained for the second integral in (3.58) and, combined with (3.57)

and (3.59) we finally have (3.53), completing the proof of the theorem.
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4. Functional Calculus, Convolution, Connections with Control and Observation Theory.

Let A be a neutral generator on H[-,]. Let x c Hm[-n,,] and let

W) = LA(X) . If S(t) is the group generated by A , then S(t) x 4 Hm(-%,,] for

any real t . There occurs to us then the question: What is the relationship between

L A(xX) and LA(S(t)xX)? Since S(t) - eAt, our first thought might be that

L A(S(t)x,X) should equal e Atp() , but it turns out that this is not the case - indeed

e Xt (X) is not in general the Laplace transform of any element in Hm[-n,wl .

In the preceding section we have developed the inversion formula (3.40) for

LA(x,) . But it is clear that if OM(A) is any function meromorphic in the interior of

ri - e( Re(X) - P} u {XiRe(X) - -P}

and analytic on r itself, and if

01a (A) - 0(X)+ 1(A) ,(4.1)

0 (A) having a pole of order 4 m at the origin, otherwise holomorphic on r I u Int(rl)
1__ and 19 M (A), MI(A) E L

2
( ), we can form

-0 1 m 1 1

tt) L I 5  )dA + 1 J( s )d . (4.2)
r0  r I

The function &(t) will have exponential growth in the right and left half planes and, for

Re()> p or for Re(w) < -p , we can form the Laplace transform of &(t):

0(U) = f e
-  (t) at

0

- fm e f3 t I eXt 0$tC)dx + 1 f Xt 0 M dX at
01 27i 10"e ()/ et% ( ) d  ( f0 r 1

r dX + I i dA

S ((4.3)

If we let

27ri



then the fact that )mo (X) c L2 ( ) shows that e-Ptt(t) C Hm[OQ
] 
, ePtz(t)

c Hm(-',0] . Since the first integral in (4.2) is just a polynomial in t , this remains

true with (t) replaced by C(t). Integrating by parts, as in (3.43), we find that

U P
O(w) + (--- ... + +- 0 1(00

6 0() + 6(0)

When OM) is the Laplace transform of a function , the formula (4.2) returns the

function and 6 = 0. Thus the map

P : 6 + 6 (4.4)

is a projection, easily seen to be bounded with respect to 01 _ [No0 2
2  

+
2 -" (r 02F1 (l~ +k I)' M on the space of meromorphic functions (4.1), the range of

L ( )

P consisting of Laplace transforms which have that form.

The characterization of L (S(t)x,A) is developed along these lines. Cleax:y, for x

A

(and hence S(t)x ) in Hm

(S(t)x) A(T) = (S(t + T)x)(0)

Hence, for Re(P) P 0

LA(s(t)x,u) f P UT(S(t + T)x)(O)dT
0

But
A1 e At + T)£b

(St + T)x)(0) - x (t + T) j e + T )

+ I f e
(t 

+ T)W (CX)dx , @(C) - L (xX).2ffi r 1A

Assuming Re() > P still,

LAISlt)x,) =f e-U' . e t f e )~CXkd)dT

0 i r

+ LIT I f p(t + T)Cd

0 2ri rt 1(

At O( + 1 0 M (4.5)

r Tit
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A similar calculation with the same result, is valid for Re(p) < -p . It is easy to

check that we also have

L A(S(t)x,U) = (S(t)R(p,A)x)(0) = (eAtR(wA)x)(O) (4.6)

and this provides the analytic continuation of LA(S(t)xVl) to C - 0(A). A further

Atcharacterization of L A(S(t)x,p) = L A(e x, ) is clear from (4.5):

LA (e At x,) = P(e li(p))

where P is the projection (4.4).

The success of this project suggests a slightly more ambitious one. Let B(n)

consist of functions f entire in the plane, satisfying in each strip -R < Re(M) < R a

polynomial growth condition, with M independent of R

If(X)I M(l + IAI)n (4.7)

and let B1 (n) be the subset of B(n) for which the stronjer condition

M1(1 + ))g)
n  If0l)I ( M(1 + IXI)

n  (48)

is satisfied.

our objective is the development of a convolqtion theory for the spaces Hmf-7,,

H n(-r,t]
' 

and its expression in terms of the transforms LA and F . It is a curious

and significant fact that the most important results (for our purnoses) have to do with the

m+1
case of an element y E H [-, it) with an additional restriction to be noted shortly,

and an element x c Hm (-5,]

Throuqhout the remainder of the section we will make use of the followinq system of

contours, r0, ri, Co, C We assume that p is a positive number such that (cf.

- +
-P < Y < Y < P

and rI is the contour consisting of Re(s) P , Re(X) = -p , positively oriented. The

contour r is a circle, centered at 0 , lying in Int( pi). The contours C0 , C, are

similar, with P replaced by p - 6, 6 > 0 , and CO  is inside r0 . A typical

configuration is shown in Figure 4.1.
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Figure 4.1

We shall suppose that p(X) is the F-transform of an element y E H
n+1 

IITIT with

the additional property that p c B (n) for 0 ( n ( m and we shall suppose that

LL) - LA(x,A) is the A-Laplace transform of an element x E H m[-7Tl] , A being a

neutral generator on Hm[, .i

Lemma 4.1. With i, p, rO, r as described above we have

0 127ri r 2d T + r u
0[ 10 + 1 ( 1 duj

+2 2. j d +A 1
C 0 -ri 1

Q(iJ)(A) + P(¢W)(A) (4.9)

for A in the shaded region D = D+ u D- shown in Figure 4.1. Here as previously,

(O) + ... + x(m-1) (0)
0A Am

-At (M)
S
(
) = -- f" e xmA (t)dt
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Proof If rD is the (positively oriented) boundary of D then it is clear that for

SD

XDD

D (4.10)P 1

D D

Because the only singularity of 0 (X) is at X 0 and () is entire

, ( )0(  , ( *0(  1 f - dp. (4.11)
2Y-- I - djj 2= i- f di + 2T Co X

D r0

Since the only singularities of 1(P) lie in the interior of Cl it is clear that

'P O ( 0 ) I ( 11) 1)S d - d 0 d (4.12)

2i' r i~ r r r- XIip di.(.1

where rN  is the positively oriented boundary of the region which lies between r, and

C, and the line Im(X) = N, Im(X) = -N . Since I O(X)j < M(l + IXI)
n  

throughout the

region under consideration and a variant of the Riemann-Lebesgue theorem shows that

lim IXI I ( I =0

jRe(X) 4 P

and m > n we have 
P W O dli1 r f d=-

N 1

provided the latter two integrals are convergent -which is clear since (h)(u) and

i are both square integrable on Ci and Combining (4.10) (4.13) we have

(4.9) and the proof is complete.

Let us observe that, since P(A) satisfies condition (4.7) in the strip -P <

Re (A) < R for every R > 0 , we may allow both 0 and r. E radius of r 0 to tend to

infinity, keeping CO  and C I  fixed. As we do so, the formula for P i¢}k s

unchaned. Thus we may define
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P('" ) m f (- y 2 i d + dp (4.14)

0

for any X lying to the right of the right hand half, C+, of C1  and ror any A lyIng

to the left ofthe left hand half, C1  , of C1 . By varying C1  it may be seen that

+
may be defined this way for Re(A) > y and for Re(A) < y . A meromorphic continuation

of g(X) across and into the interior of C, may be obtained by noting that P(X)*(X) is

meromorphic and (letting r0  tend to infinity)

f(m) M

is an entire function. Thus the identity

g(M) = .(;)M(X) - Q(4 )(X) = ())IPM - f(M) (4.15)

which (4.9) shows to be valid outside C1  (taking r0,, sufficiently large) provides the

desired meromorphic continuation. We see than that (4.9) extends to the whole plane, with

the exception of the poles of *(X) , enabling us to write O(M)p(1) as the sum of an

entire function f(X) - Q(I)(X) and a meromorphic function g(A) = P(4)(X) , This is

obviously the same process as occurs in the development of Laurent series.

Proposition 4.2. There exists a function z (= z A), defined for -- < t < -, with

Hm-n[0,_), Re(X) > y+

etz W e(4.16)

H -n __, ] ,Re(A) < y-

such that g(\) is the Laplace transform of z . Further, there exists an element u

(=uA) , Hn [-T,r' such that f(A) is the F-transform of u * Both z and u are

uniquely determined by p (hence y) and 1 (hence x and A

Proof. Let 0',I ,C 0,C I be defined as in Lemma 4.1. If Re(X) > y+ it may be arranged

(possibly by making r, slightly asymmetric if y+ Y-) that the path r+  lies to the

right of C+ and to the left of X . Then
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(Pg)(A) 1 g(,) dp

Pg_ ( 1) 1P0 (V) (V) 1 (V)
- 1 - -f dv + 1 dv

2w Cr1O2TiC 11 1iC 1

1 C1
- f P(V)*O (v) - d(j) dv

21iC 0 2111. V

+ f ______( f Ld

0I

= g(x)

It follows that if we set

z(t) = £ pt(v)* (vd + i f vtp),(,)
C 0  CI

that g(X) is the Laplace transform of z(t). Since Vm-nO(V)*l(V) is square integrable

on C1 , for A to the right of C1  we have

eXtz(k) (t) _1 f vke(v-X)t(\)p* (v)dv) + if vke(V-X)t (v)l (V)dv (4.17)

k7r = 0 2orm- n

the last integral being taken in the l.i.m. sense *f m = n . The first integral is

e
At 

x a polynomial in t . The second is in L 2[0,1) by the Plancherel theorem. We

conclude that the left hand side of (4.17) is in L2 (0,-) for k = 0,..,m-n and (4.16)

follows.

To complete the proof we must establish that Q(00) (X) is the F-transform of an

element u ( H
n [ -

1,i]'.

Using the fact that k(P) satisfies (4.7) together with the fact that
(m-i)(0 1 f

X() + + x (0) + 1 - e-Atx(m) (t)dt

AAm Am 0
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is of order we see that (A)(A) may be bounded by a constant times (1 + AX)n-1

on vertical strips in the complex plane. Since g() is a Laplace transform, it is

uniformly square integrable on vertical lines. Then (4.15) shows f(X) has the property

that f(A)/(1 + IX)n is uniformly square integrable on vertical lines in the complex

plane. Using (4.8) again, together with (3.5 a,b) we see that there is a positive number

such that for all real

+infl4(& + in) M4ev

(1 + IE + inl)n (I + j j) 2

Since g , being a Laplace transform, satisfies

MBe
(1 + l 1/)2

for some B > 0 it follows that

+ in) e ITII 4 (4.18)

1 + ( + in) (1 + I 1) /2

for some M > 0 . Together with the uniform square integrability of f(X)/(1 + AIl)n on

vertical lines, (4.18) shows, using Theorem 3.2, that

f(A) - F(uA) (4.19)

for some u E H n[-,w]
'
. This completes the proof of Proposition 4.2.

Hn+ 1
Definition 4.3. Let y c H n -,1 and satisfy (4.7) while x c Hm 1-,5], m n

The A -convolution of y with x is the element z described in Proposition 4.2. We

write

z = (y * x) . (4.20)

The remainder from the A -convolution of y with x (referred to as just the remainder

when yx,A are understood) is the element u described is Proposition 4.2.

It will be recognized that the decomposition of the product (I) (A) which we have

just described generalizes one already familiar to users of the Laplace transform. If
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PM n + aln-1 + + a + a is a polynomial of degree n in A and p(D) isp~l1 = ' n-1 an"

the corresponding polynomial in D =- and if x,x'(t), .*.,xn(t), t ) 0 , have Laplace

transforms, it is well known that

L (p(V)x,X) = g()) + p(A)L(x,A), (4.21)

where q(X) is a polynomial in X of degree 4 n-1. If x is any linear combination of

exponential functions, (X) = L(x,A) and g( )= L(p(D)xX) are rational, i.e.,

meromorphic, functions. Letting f(X) = -q(), p(A) = O(X), f(A) and p(A) are

holomorphic and (4.21) becomes

g(%) = P(X)f(A) - fNX)

in agreement with (4.15).

For reasons which will soon be apparent, our main interest lies in the case where

m = n , so that y , satisfying (4.7), is an element of H' [-I,]7T)'.

m
Theorem 4.4. Let x r H m-s,ir) and let xA be its A-extension to (-,o).Let

y E H m+[-T,r]' satisfy (4.7). Then

(y * X) At) = l.i.m. + (Y'nA (t + -) (4.22)

A Ox - CIm _

H [ir, rj

in the sense that, for Re(A) > y
+
, Re(X) < y-, respectively

lim le -At((y*X)A(t) - (y nA (t + L) ) 2)L = 0

lim le-t ((y*X) A(t) - (y,nA(t + 0lira - + " L ) (--,0]1

for any sequence (& n V(A) converging to x in Hm(-T,7T1. if x c D(A) then

(y * X)A is continuous in t and

(y * X)A(t) = y'xA(t +o)) . (4.23)

Proof. We begin with x V D(A). Then the right hand side of (4.23) is well defined and,

since x A(t + *) (the restriction of xA to ft - n,t + w)) is continuous in H M+1-r,l

when x E D(A) , it is continuous as a function of t • Exponential growth as t + t is

easily established and we may form the Laplace transform

-54-



L(yx (t 4- r e - t 
( y,x (t + *) )dt

A J A0
Re(A) > y+

f0 e
-X t 

( YXA (t + ) ) dt, (4.24)

Re() < y

From (3.42) we know that if P(A) is the Fourier transform of y and

t(X) = t,0(X) + t,1(X) is the A-Laplace transform of xA(t + *)

YXA(t + ~> -L f P (X) t,0(X)dA + -- 
f  

(X)*t, 1 (A)dX
r r1

Here and in the following, lt ,, t1,,0O*, are computed relative to H 
M  

-r,7],

H M + (-IT,]'. Thus

x. A 2 m+1
(A)t=0(3 ) = d- + 1° + Vt+ j

etc. Let the contours r0 ,r I C0 ,C I be arranged as in Figure 4.1 again. We have the

Co 1.
formula (cf. (4.5)) 1 e Vt0 (V) 1 evt +1 (V)

M t 'f - T f v d + T -v

(we have just replaced r0 ,Fr in (4.5) by CO, CI) valid for A outside C1 , in

particular on the contour r From the fact that

x(0) x'(0) + + x (0)
Vo

(
V
) 

= V 2 m+1

it may be seen that the first integral has the form

I -eVtp 0 ( v) 80 81 6

I f V dV = + + ... + a m (4.25)
27ri C 0 -A V A X2 Am+

for constants 80,81,., . Since
01m m+1
1 1 V V V I
-V A 

2  
m+- m+1 A- V

we have (V)

2Tri C X 1 v 27r C X, M Y.

C +1
+2nC Lm+1 dA-v

Combining (4.25) and (4.26) we see that
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M eVt o (V) dv + f + v -m )e+t *()*d (4.27)

t,O 2--i A - V 2 C A Am+l 1

1 jvm+
1 

evt l(V)
t )- dv . (4.28)

Then, noting that the first term on the right hand side of (4.26) extends, in the same

form, inside C1 , and using (3.42) we have

Yx (t + *) ) = (-Xf (dX + fAOdX

A I r()[1 et 
) 

dv1 r m t

1= ff V dv + I f ... + - v (v)dv]dA
2Tr r 27iir7i- A + 1

CC 1  e A

+ f VP (A) A fdAvdv

27vi r Ai
1 

X-v

Let V be any point on C1 . If F is a rectangle centered at the origin, lying

inside F 1  and containing v in its interior, then, since the only singularity of

a1

m m+J mi inside
- + - - is at zero and the only singularities of - lie inside

A 2 A"'- A"'
4 1  

A -V

, we have
vm 1 r Tm+ 1

2 Fi A
2  

A
m  ~ 2-i P m+ X

0 1

f I. dA = (v)

and (4.29) gives

(Y'XA(t + ()) = -Vt $( ()dv + i er Vt(V)h v)dv . (4.10)

C O
x 2fiJ eC

1
0) r2w 0 rs 1

Computing the Laplace transform for X outside C1  ( A to the right of the right had

branch of C1  shown here) we Find using Definition 4.3 that
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-e.t (Y'XA(t + o)) dt

0

" f0- 2I e t (V) (v)dv 
+  

f J" et(V) 1(v)dv]
0 C0  C1

1 (V) 0 (V) (V) 1 (V)

-~ f - dV + F- dX
C C0 1 (4.31)

- L((y * x) AA)

Thus

L( (YX (t + M) ) ,) - L((y * x) A)
A A

and we conclude by the familiar uniqueness theorem for the Laplace transform, that (4.23)

is valid.

Now let { n} c D(A) with

1im flx - 0n
n nH (-iITJT

for some x c Hm[-,Ir]. For each n we have i
(y * n)A (t) (y, A(t +

with Laplace transform (cf. Definition 4.3 and (4.9))

- n, dv + 1 f dv.
2ii ) V 2ri ) - v

0 1
NowM

( (0 ) n(0) n (0)

*n,0 (  +  2 + m+1
V V

I -Vt (m+1)
n,V) = e A (t)dt.

V 0

We regroup these as (i-i)

-n0()= + n
i)n,0CV) V- 2 m

V V

(V) 0-~ + I f- e-vt&(m+llltldtn,

n,
(  

Vn m+ I Im+l 0 ,

1 C-Vtr(m)( t)t.

V 0
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Observing that

-- (v n + (v)( 1 ! m+l dv21T f X -v dv = .".T rJ
2vi J V0i -

we have

L ccy 'P )V)* n,) (V) dv + I f O(V)n,l (v)dv

),0 1 - v 2wi

%ut (defining with reference to Hm(-i,r] now) Definition 4.3 and (4.9) give

L (( lx)v
l  

1 ___l__l vl
L((y * X) AA)= - " dv + T i _ dv 

0 
1

Let us write

(y * )A(t) = z n(t), (y * X) A(t) = z(t).

Then, since zn(t), z(t) have the indicated transforms

z(tl Znltl = z-( f e' Cv(po(V) - n,o (v))dv

+ I. f eVtolvl(l(v) - nl(v))dv
+21ri r e PV( () *,1

The proof of (4.22) then follows the same lines as in (4.17), ff. and the proof is

complete.

We complete this section with a result which forms the core of our work in Section 5.

Theorem 4.5. If n isthe generating distribution associated with the neutral generator A

on Hm(-n,7r], if x Hm(-n,yf) and u is the remainder from the A-convolution of r)

with x , then

F(ux)
= LA(x,X) = - ( -=. (4.32)

Remark For our work here we will make the assumption that n , HM[- ,m ] satisfies (4.R)

but (4.32) is true under more general circumstances.

Proof. It is only necessary to observe that for &n -(A), (n'Fn,A(t + 0 . Hence

r * x) = 0 almost everywhere and g(A) = L((nex) ,A) 0 . Then (4.321) follows From

(4.15).
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5. Exponential Bases from Neutral Groups.

Armed with the transform theory which we developed in Section 4, we are now prepared

to discuss Question B posed in Section 2. We cannot give complete answers to this

question but we can make some beginnings. We shall suppose that A is a neutral generator

on H [-f,T] with domain (x E H M+1[-T,] I (x,n ) - 0}, n being the generating

distribution in Hm[-7,w]
'
. We shall suppose that o(A) - F(n,A) satisfies (4.8) with

n - m. We hope to devote another paper to some significant cases wherein (4.7), (4.8) do

not apply. We will content ourselves here with the statement that it is useless to try to

prove that every neutral generator A corresponds to a generating distribution n for

which (4.8) is valid. By use of the gamma function one can easily construct n (via

m
F (n,X)) for which A generates a group on [- ,v] but (either part) of (4.8) fails.

The work done in Section 4 shows that n satisfying (4.7) yields a map

B: Hmf,- I] + (m[-w,ir ,

(5.1)

Bx *U

where u is the remainder from (n x)A . Following a comment by Mihailov in [18] we

will call 9 the Pary (after N. K. Bary) operator associated with n . It has the

properties set forth in

Theorem 5.1. If B is the Bary operator associated with the generating distribution n

of a neutral group on H M[-r,ir] and if n satisfies (4.8) with n - m, then

i) B is one to one and bounded.

(ii) B is onto in the case m(=n) = 0

(iii) Let Ak be a zero of F(rX) of multiplicity mk. Then B maps the

subspace of Hm(-71,iTI spanned by the generalized exponentials

xkt xk
t  

mk-/(k-1)] ek
t

e t e ,, t )e onto the dual subspace of

Hmf-1,l]
' 

spanned by elements q , = 1,2,-°°,mk which have the

properties (pkj(t) = (t-/ - ke k
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Pk,9' q *) = 6 = (5.2)

p , q,) = 0 , = 1,2,..*,m (5.3)
, kk

if X is a different zero of F(h,X) of multiplicity m
k k

Proof. That B is one to one is immediate: if u = 0 in Hm[-w,w]
' 

then (4.32) shows

that L,(x,X) = 0 which implies, via the uniqueness theorem for the Laplace transform,

that xAt) 5 0 and hence x = 0 in Hm[-w,w) . The boundedness of B is an easy

strengthening of the statement u E H n(=m)-i,wI] in Proposition 4.2.

To show that B is onto when m(=n) = 0 , let

) - F(u,X)/F(n,A).

From Theorem 3.2 (M) is square integrable on vertical lines in the complex plane and,

with r1 defined as before

m(X) = X v dv (S.4)
r

converges for A outside r . We will show that 6(A) = W(A) . Using Theorem 3.2,

(4.8), for IRe(X)l sufficiently large

I F(uX) M

TT~nX) (1 + IRe(X)l) /2

Let contours r
+ 

, r- be constructed as shown in Figure 5.1, the semi-circular parts of
R R

each being denoted by R ,R

Figure 5.1

ForX nsde R (i.e., for R sufficiently larqe)
R

11() ,v (() .. 2. 
-f I
v) IV - 0 . .

f a - - v
21i r X- 2iri r X V

R
+
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We easily estimate, using (5.5),

J f P M f2 d61+(K 77 - (Cos 6 /2
R R 2

as R + -, M being a convenient constant. It follows that

21Ti ( j + "V - v + -L f_ 2(V dv) f 1P f V dj v
Rr R R r

and (5.4), (5.6) give

*(A) = O(X) = - f v

rI
Thus *u(A) is the Laplace transform of 27ir1X

Since F(r ) = F(u,X) is entire, it follows that L(n * ),A) = 0 and hence

n * = 0 so that (t) - XACt) if x(t) is the restriction of to [-I,5]. Then

2u - B(x), x f L [-w,yr] and B is onto for the case m(=n) = 0 . This result does not

extend to m[-n] > 0

To establish (iii) it is enough to observe that if x E Hm[-,IJ] is a linear

combination of the generalized exponentials (t -1/(1-1)1)e 
k  

then L A(x,X) is a

-1
polynomial in (X - X) of the form

Y1 Y 2 mL (x,X) = - - + +k) ...' +
S(X - k)m

Then

F(u,A) = F(n,X)A (x,X)

is either nonvanishing at A - Xk (if ym 0 ) or else has a zero of order less than m

there, assuming x * 0 • On the other hand, a zero A X k of multiplicity m of
-k

F(n,A) remains a zero of multiplicity m of (u,A). This shows that B maps the

k

subspace spanned by the pk,t into the subspace spanned by the q, which is the

subspace of Hm[-wo]' whose elements y have F-transforms 1
(yA) which have zeros of

multiplicity m at A A )k . About X = k  we havek m-

(u,X) = a0 + a 1( - k) + + k- k +

-k1



and it may be seen that the finite dimensional linear map (y1,...,Y ) +

m'-1) is nonsingular. Hence B maps the subspace spanned by the Pk,£ onto

the subspace spanned by the qk,X and the proof is complete.

We turn next to the question of completeness. Let {Ak k c K} denote the set of

zeros of F(n,A) and let {mklk c K} be the corresponding set of multiplicities. Here

K is any convenient countable index set. A condition for completeness of the set
t£- A kt

e I k e K, X = 1,2,...,m k  (5.7)

is given by Levin in (131. The proof is based on use of the indicator diagram of F(n,A)

and an assumption about the growth of that function similar to (4.8).

When n is the generating distribution defining the domain of a neutral generator,

A , with F(n ,X) satisfying (4.8), these considerations may be replaced with an argument

using the representation (4.32) together with the minimum modulus theorem (see (29], e.g.).

Theorem 5.2. Let n be the generating distribution associated with the neutral

generator A on Hm[-s,w] with F(n,l) satisfying (4.8). Let

Akt
E = ((t /(X-1)l)e Ik E K , X. 1,2,...,m (5.8)

n k

be the set of exponentials associated with the zeros A , of multiplicity a " of

F (n,X). Then E is complete in Hm -n'w] •n

Proof. It is well known from entire functions theory that F(nX) must have infinitely

many zeros. Select m of these; call them C,10 2  am Let
m

p(X) = R (x - ak
k=1

and 1-t 0 be the element of L2[-I,] whose F transform is F(nA)/p(X)

Arguments similar to those given in Section 2 show that E is complete in Hm [-w,w] ifn

and only if, with Wk the multiplicity of Ok,

E, = E - (t k /(jk-1)1)w Ik = 1,2,°..,m}

is complete in L2[-1,1] . As we have seen from Section 2 the operator An

(differentiation on H
) 

with domain described by < x,n0  = 0 aenerates a group on

L
2

[-,,( if and only if A , with domain designated by x,) 0 , generates a group

on - "-

I I I' . . . .. .. . . . * . .. . + I -- 1 I '+ -- '- ' - l l I + + Ill * i l 'o



If E were not complete in L2 (-w,] there would exist a non-zero elementn0

L2 [-r,1 = L
2 
(-n,,f] such that (u,p) -0 for each p of the form

A t
p(t) = t-/L-1)le

k  
E Eno

Since Theorem 3.2 gives

2w"- r k~, t

= Res[F(u,A) IX = k

2li(A k)

k

we conclude that F(u,X) has zeros at the zeros, k., of F(Tn0,), of at least equal

multiplicity. Hence F(u,A)/F(Rn,A) is entire. Since B is onto for m = 0 (F(n,l)

satisfies (4.8) with m = 0) we conclude that there is an element x E L2[-W,r] such that

L A (x.) = F(u,X)
Ax F(no,)'

But then, as we have just noted, L (x,X) is entire. From this we can show thatAO
L (x,A) = 0 , implying x = 0

A0

First of all, the fact that F(RnX) is of order I and type w implies (see, e.g.

[131) that the seros of F(n ,A), counting multiplicity must be such that, with N(R)

denoting the number of seros of F(noA) inside the disc of radius R in the complex

plane

N(R) < KR (5.9)

for some positive constant K

We know, since A0  generates a group, that we can find a contour ri = rI u r as

shown in Figure 5.2 containing the zeros of F(n,,X) in its interior. From the density of

+ -
the zeros as described by (5.9), it follows that we may construct paths C , C , (the+
seqments of Im(A) = r , Im(A) = -r lying between r' and r ) for a sequence of

values of r = rn tending to , such that

dis(A, C) ) , all r = r
r n

for some fixed c > 0 , A denoting the set of zeros of F(n, A). Usinq the order and type

)f i(t ,X) together with the minimum modulus theorem (see, e.g. [291, Chapter VIII) we

see that
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IF(n,X)! ie F. C
r n

n

where W is some positive number and C is an arbitrarily small positive number. Then,

since F(u,X) is bounded in the interior of r

LA(x,X) v eM ( 7 + C), A Cr
A r n

The result (5.9) also implies that the Cr can be selected so that the rk grow at ratesrk

which may be bounded above and below by positive multiples of k . Then, since

F(u,X)/F(OIA) is entire it follows that, in the interior of r1 ISLAo (xo'.X) Ve'
l (  

+ s)

r2

rr +

!r2

r1

t

r V

Figure 5.2
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Combined with the fact that LA( x0,)X), being the A-Laplace transform of an element

x e L
2 
C-ff,w] , must be bounded on fil we may use the Phragmen-Lindelof theorem for a

strip (see, e.g. (91, Chapter 18) to see that L (x,A) must be bounded by a constant in
A0

the region bounded by the contour r But LA (X,) is uniformly bounded on vertical

lines outside r and

lim LA(x,X) = 0
1 ReM}I

so LA(x,X) , and hence x , must be zero. It follows then that u = 0 , contradicting

our earlier assumption. Thts completes the proof of Theorem 5.2.

M
Since the existence of biorthoqonal elements in H [-ff,lr

' 
is already assured by

Theorem 5.1, we know that E , described by (5.8), forms a strongly independent basis for

imf-1!,ir]. This, however, is not the same thing as showing that each element

x E H m-Tr,w] can be developed as a series in the elements of E , convergent in

Ht[-W,w] . For this we must have properties of F(n0, ) which are stronger than those

which may be inferred from the minimum modulus theorem.

It is not necessary to state and prove a separate theorem because we already have

Theorem 3.9. What is necessary is to establish conditions sufficient to guarantee that the

condition (3.52) is staisfied. The representation (4.32) can be very useful here. We

begin with the case m = 0 .

Proposition 5.3. Let m = 0 and suppose that n E HI [-r,ir]
' 

is the generating

distribution corresponding to a neutral generator A (of the form (2.9) with m = 0) on

L 2[-1,ir. If the paths cj, Cj in the proof of Theorem 3.9 can be selected so that

IF(,X)I > 6 , X e C , X ( C (5.10)

for all j and some fixed 6 > 0 , then (3.52) follows and the expansion (3.53) follows.

Proof. It is enough to note that F(u,X), being the Fourier transform of an element

u c L 2(-ir,wr has the property

lim sup (IF(u,)I) = 0 (5.11)
j+ X I C.(C )

b -v

by virtue of the Riemann Lebesque theorem.

- 6 ,-
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Corollary 5.4. In the case m 0 (5.10), and hence (3.52), is true if F(iA) is

uniformly almost periodic in a strip

IRe AI C p

which includes the contour rI

Proof. This is clear from the definition of almost periodicity. See the related result

in [4].

An example which one might cite here is

n (] c _ + k 6(k = 1 (Ok)

where the ak are distinct points in (-v.v) , co  0 and {Ck} E 2). The almost

periodicity of (MA) follows from results in (4], (131

Proposition 5.5. Let Cj, C_j be as in Propositin 5.3 and Theorem 3.9. Then, for an

arbitrary integer m ) 0 (3.52) remains true if F(nX) s (4.8) and (5.10) is

replaced by

IF(T),A)I > 61lU ,  A E C , A EC_ (5.12)

for all j . The expansion results 3.9 follow in Hm I!.

Proof. Let xA be the A-extension of x and let L (x,A) - L(x ,A) as before. Let
A A'

00 2'...',am be m zeros (possibly including multiplicity, of F(n,A) . Let
m m

p(A) t (A - a) , p(D) = I (D - a I)
ki k k - 1 k

Let

z = p(D)x A

Then for Re(M) p , P etzt L2 (0,-), for Re) < -p, e-XtL2 ( -,0] and we conclude

that L(z,A) E L2( r), assuming rI lies in IRe(Al) > p . The familiar computation from

ordinary differential equations shows that

L(xA ,A) = SA ) + L(zX) (5.13)A PUXT -P( )

where q(A) is a polynomial in A of degree 4 m - 1. Since the zeros of p(N) are

zeros of F(n,A) we have

F(n,A) - p(A)F(n ,A)
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where F(n0,) is (as a result of the assumption (4.8) on F(n,X)) bounded and bounded

away from zero on F1  As seen earlier, n0 is the generating distribution for a neutral

group on L2[-7T,n]. Now (4.32) gives, with (5.13),

p(x)F(no, X)( q(X) L(z,) UA)p(T-T +  p( ) "Fu

whence
F(u,X) - q() F(no,X)

L(z,X) = Fn,).(5.14)
2 FRnox)

Since L(z,X) is in L2(ra) and F(n0 ,X) is bounded and bounded away from zero on F1 ,

we conclude that the entire function F(u,X) - q(X)F(n 0 ,X) E L2(F1 ) and, being of order I

and type N , must be the F transform of an element w e L 2[-w,w] thus

F (uX) = F(w,X) + q(X)F(no,) (5.15)

where q() , as indicated earlier, is a polynomial in X of degree 4 m - I

Now (5.14) gives

L (z,X) = F(wXA---,)FRnoIX)

and (5.13) then gives

L A(x,) = L (x A,) q(,) + 1 L(w,A) = q(X) + L(wA) = A + -P (1T- -P(X TF~iTXTT) -PM- -Fn,IT *) I

The functions 4'0() and I(X) can be used in the same way as *0 (X) , *,1(X) were in

Theorem 3.9. The form

= L(w,X)
F( n, X)

enables one to use the Riemann-Lebesgue theorem on L(w,X) together with the assumptions

(5.12) on F(rl,A) to see that (3.52) is true with *1 replaced by 4I " The results then

follow immediately.

We remark that (5.14) shows why the map B is not onto for m > 0 * Its range is

contained in the subspace of Hm[-ir,1r] spanned by L2[-1,1] and the m distributions

no , 6!, * nn,.. (m-1) , n( ." It is noteworthy that the elements of Hm(-i,wl ' biortho-
(11 (0) 0

gonal to the generalized exponentials in E lie in this subspace of Hm[-w,w] '.

n
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We will conclude this report with a short discussion of the application of our theory

to the study of uniform bases of exponentials. We confine attention to the case m - 0

and we make the following assumptions:

(i) n0is the generating distribution associated with a neutral generator A

on L [-7r , )

(ii) F~fl0,A) satisfies (4.8) with n(-m) -0

(iii) the zeros, Xk k E K , of F(n0,A) are uniformly separated:

j-A k D ,j*k ,(5.16)

where D is a fixed positive number.

(iv) Let
A -{AXkI k e A)

We assume there is a positive number 14 such that for every complex X

IF(n 0) X) > M dis(X,A). (5.17)

We begin by establishing

Proposition 5.6. Let n 0  be the generating distribution associated with a neutral

generator A() on L 2 -ir,rl with Fourier transform pCA) = F(no A) satisfying (4.8).

Let U E L 2 -virjw and let

6(X) F(u,X)

Assuming Ci) - (iv) satisfied,

0(A) = ~ ( A 3 (. 9

k E K VXk ~ k

for every complex A A A , the convergence being uniform on compact sets in the complex

plane which do not meet A

Proof. Let x c Lt2 (-w,w] with AO-Laplace transform LA (x,X) he such that, from

Theorem 4.5,

0MA)

Let r- 1 r+u r be constructed as in Figure 5.1 so that A and A lie in its

interior.
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Form the integral

Following the argument applied to (5.4), we can show this integral to be zero for

e intar) Then, using (5.19),

1 L%(X)dv

2li ()O 0 )

Constructing cross paths C. I c-i from r +to r- of uniformly bounded length, at a
I 1

uniform distance from A (which (5.16) permits, we can use (5.17) to see that

f. iv dv v
2iri r X - V e~~(V/ )I

the sum taken over the poles of U*dv)/X - v) ,inside r From (5.19) the residue at

v -A is -O(A/MA while at each X E A the residue is M(A k)/Io(.(k )(A - X fl.

Since the sum of the residues is zero, (5.18) follows. That the convergence is uniform on

compact sets not meeting A (this last condition can be dispensed with) follows from the

fact that f5~ (*J(V)/X - V)dV tends uniformly to zero as c:, + . for X so restricted.

Corollary 5.7. Under the hypotheses of Proposition 5.6, with *(X) the A-Laplace

transform of x E L 2 fI-r~r

kc EK X c k
Remark. This is, of course, essentially Corollary 5.4 and Theorem 3.9 again, with the

coefficients identified more explicitly.

Theorem 5.8. Under the hypotheses of Proposition 5.6 (including assumptions Mi-(iv)),

the e k t'kc K . form a uniform basis for L 2(-It~lr)

Proof, we begin by noting that if we multiply l/o(A) =1/F(n 0, A) by A X A and use

(5.17) we obtain

hP'(X )H > M , kc K
k

-69-



Akt

The results presented already in this section show the e , k E K , to be complete

in L2 (-w,il and, since the functions qk(t) E L 2 [-,wl] whose Fourier transforms are the

functions

SO(Ak)0 -X k) .k ) A K

At,
are readily seen to satisfy, with Pk(t) e

(P k'qX) L2 k ,. E K

Akt
the strong independence of the e , k K , is assured. Consider sequences

{ak k E K} (5.22)

in X2 with the usual norm. Define
Akt

T {a l + a e
k E K

The domain of T is initially sequences (5.22) with all but finitely many ak  equal to

zero. Then we extend T in the obvious way to all {a k  for which I ak et

is convergent in L 2-w,irl. Then T is densely defined and one to one with dense range in

L-w,']o The adjoint map

T* bk q k + {b k
IcE K

is again easily seen to have dense domain and range and to be one to one.

Now, in fact, the operators T and T* are both bounded. This follows from a result,

2
proved in (5] and (221, for example, to the effect that if u c L (-i,W] and O(A) is the

Fourier transform of u then the map from 0 to {O(Ak), with the A constrained as

2in (5.16), is continuous with respect to the LF. norm of 0 on any vertical line r and

the I norm of {0(A k). The relation (5.18) together with the fact that

1P (A)/C'(Ak)(A- Ak)) is the Fourier transform of qk(t), together with the result just

stated, shows T* to be bounded. But then T - (T*)* is also bounded.

In order to complete the proof of the theorem it is clearly enough to show that T-1,

or, equivalently, (T*)-1  (T-1)*  is bounded. That argument proceeds as follows. From
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t2
the boundednese of T and the Plancherel theorem, we see that if {a k c X. then

= k L 2[-i .] r'.23)
k EK X xk

and there is a positive constant M, such that

2 - I2 l* )121d2 I M . laI 12 , (5.24)
L 2'I) r 1  

k C K

Now let {bk I 4 2 We want to obtain, in order to bound (T , a bound, in

L
2 
(-w,w] , on the sum

I bk qk(t)

k fK
Therefore, we consider the corresponding sum of transformsb k 1P M

'C (l) A -

k E K k
A priori we know nothing about the convergence of this sum. But now consider

bk
*( A)) A - A

k E K c k 2
Since the numbers 101(A k)I are bounded away from zero and {b k l I, we havebk

kc b1  2 I

and therefore, replacing the ak  in (5.23), (5.24) by the b k /0(X k )

*122 M b I C M b 12

L (F k EK k k EK

where

= inf 2 >0

kcK k 
I

Let

O( = A) ()*(A) = (A)( EKI '( X -T )  
(5.25)

Since (A) is bounded on I'

101 ( M2  lb k12 (5.26)

L(r) k K

for some M2 > 0 . From the qrowth properties of (A) and *(A) we infer that
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Proposition 5.6 can be applied to OMA) . Now (5.25) shows that

(X (k) - bk
k k

so Proposition 5.6 gives
bk MU.

OM #(A ) A ' (5.27)

the same result as we would get from (5.25) by taking v(A) inside the summation sign.

Formula (5.27) gives the expansion of 0M) in terms of the functions

1PM)/[ '(X )(. - Ak )] . Formula (5.26) can be used, with partial sums, to establish the

convergence of (5.27) in L 2(I ) and that formula likewise shows that

2(X) ,2 O H 'b'l2 U{b ,2
Of2bk P~ M( - X i1 2 4M2 lb kic - ~2 Ick} 2

L (F) k K k k) L2(F) kgK I

Applying the Plancherel theorem, there is an M3 > 0 such that

I [ bkq k 1
2 2 I{b N 2

k K L C(-it ,] t

and we conclude that (T*)-I, and hence T-1 ,is bounded, completing the proof of the

theorem.

It may be useful to review the outline of the proof above. A more or less standard

result shows that T is bounded. The boundedness of (T*)"I is obtained by introducing

two operators. The operator C carries {bk g 2 into I 'k L 2 if the

01(A k are bounded below. The operator B is the Bary map described at the beginning of

this section. What we have shown is that

(T*)I - B T C.

Since B and C are bounded (and boundedly invertible, in fact) this result allows one to

infer the boundednese of (T*)-1  from the boundedness of T . The essential contribution

of this report lies in the development of the A-Laplace transform, establishing the

equivalence of 1*1 2 and |xi , where * is the A-Laplace transform of x

which permits the boundedness of T to be restated in the form (5.24).

These results can be extended to H -l,1], replacing (5.17) by

I F(n,A)I ) M(l + [)I)mdis(X,A).
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